Energy Transfer from Pr3+ to Gd3+ and Upconversion Photoluminescence Properties of Y7O6F9:Pr3+, Gd3+
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
3.1. Phase and Structure Analysis
3.2. SEM Image of the Y7O6F9:Pr3+, Gd3+ Phosphor
3.3. PL Properties of the Y7O6F9:Pr3+ Phosphor
3.4. PL Properties of the Y7O6F9:Pr3+, Gd3+ Phosphor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C.J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 2011, 23, 2675–2680. [Google Scholar] [CrossRef]
- Kang, D.; Jeon, E.; Kim, S.; Lee, J. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. BioChip. J. 2020, 14, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, Y.; Wang, Y.; Zhang, J.; Dong, P.; Zeng, W. Structure, enhancement and white luminescence of multifunctional Lu6O5F8:20%Yb3+,1%Er3+(Tm3+) nanoparticles via further doping with Li+ under different excitation sources. Nanoscale 2013, 5, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Liang, L.; Li, L.; Zhang, R.; Xu, Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B 2018, 6, 192–209. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, J.P.C.; do Carmo, F.F.; Façanha, M.X.; Sales, J.C.; Gouveia, D.X.; de Andrade, H.D.; Queiroz Júnior, I.S.; Sombra, A.S.B. Up-Conversion Luminescence of Er3+/Pr3+/Yb3+ Co-doped LaNbO4 Phosphors. J. Electron. Mater. 2020, 49, 6009–6015. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Liu, X.; Han, B.; Wei, J.; Yang, Y. UVC upconversion material under sunlight excitation: LiYF4: Pr3+. Opt. Lett. 2016, 41, 792–795. [Google Scholar] [CrossRef]
- Espinoza, S.; Volhard, M.F.; Kätker, H.; Jenneboer, H.; Uckelmann, A.; Haase, M.; Müller, M.; Purschke, M.; Jüstel, T. Deep Ultraviolet Emitting Scintillators for Biomedical Applications: The Hard Way of Downsizing LuPO4:Pr3+. Part. Part. Syst. Char. 2018, 35, 1800282. [Google Scholar] [CrossRef]
- Reichert, F.; Moglia, F.; Metz, P.W.; Arcangeli, A.; Marzahl, D.T.; Veronesi, S.; Parisi, D.; Fechner, M.; Tonelli, M.; Huber, G. Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. Opt. Mater. Express. 2014, 5, 88–101. [Google Scholar] [CrossRef]
- Berneburg, M.; Rocken, M.; Benedix, F. Phototherapy with narrowband vs. broadband UVB. Acta. Derm. Venereol. 2005, 85, 98–108. [Google Scholar]
- Parrish, J.A.; Jaenicke, K.F. Action spectrum for phototherapy of psoriasis. J. Investig. Dermatol. 1981, 76, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Tamboli, S.; Nair, G.B.; Dhoble, S.J.; Burghate, D.K. Energy transfer from Pr3+ to Gd3+ ions in BaB8 O13 phosphor for phototherapy lamps. Phys. B Condens. Matter 2018, 535, 232–236. [Google Scholar] [CrossRef]
- Yan, S.; Liu, F.; Zhang, J.; Wang, X.-J.; Liu, Y. Persistent Emission of Narrowband Ultraviolet-B Light upon Blue-Light Illumination. Phys. Rev. Appl. 2020, 13, 044051. [Google Scholar] [CrossRef]
- Cates, E.L.; Kim, J.-H. Upconversion under polychromatic excitation: Y2SiO5:Pr3+, Li+ converts violet, cyan, green, and yellow light into UVC. Opt. Mater. 2013, 35, 2347–2351. [Google Scholar] [CrossRef]
- Yan, S.; Liang, Y.; Chen, Y.; Liu, J.; Chen, D.; Pan, Z. Ultraviolet-C persistent luminescence from the Lu2SiO5:Pr3+ persistent phosphor for solar-blind optical tagging. Dalton. Trans. 2021, 50, 8457–8466. [Google Scholar] [CrossRef]
- Cates, E.L.; Kim, J.H. Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation. J. Photochem. Photobiol. B 2015, 153, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Cates, E.L.; Li, F. Balancing intermediate state decay rates for efficient Pr3+ visible-to-UVC upconversion: The case of β-Y2Si2O7:Pr3+. RSC. Adv. 2016, 6, 22791–22796. [Google Scholar] [CrossRef]
- Cates, E.L.; Wilkinson, A.P.; Kim, J.-H. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9:Pr3+ and Y2SiO5:Pr3+ ceramics. J. Lumin. 2015, 160, 202–209. [Google Scholar] [CrossRef]
- Shimizu, Y.; Takano, Y.; Ueda, K. UV emissions in Gd3+ doped or Gd3+–Pr3+ Co-doped III–III perovskite-type RMO3 (R = Y, La; M = Al, Ga). Thin. Solid. Films. 2014, 559, 23–26. [Google Scholar] [CrossRef]
- Singh, V.; Srinivas Prasad, M.V.V.K.; Rao, A.S.; Rao, J.L.; Irfan, M. On the ultraviolet B emissions of CaLaB7O13:Gd3+ phosphor. Optik 2020, 217, 164880. [Google Scholar] [CrossRef]
- Mokoena, P.P.; Nagpure, I.M.; Kumar, V.; Kroon, R.E.; Olivier, E.J.; Neethling, J.H.; Swart, H.C.; Ntwaeaborwa, O.M. Enhanced UVB emission and analysis of chemical states of Ca5(PO4)3OH:Gd3+,Pr3+ phosphor prepared by co-precipitation. J. Phys. Chem. Solids 2014, 75, 998–1003. [Google Scholar] [CrossRef]
- Ma, M.; Xu, C.; Yang, L.; Ren, G.; Lin, J.; Yang, Q. Intense ultraviolet and blue upconversion emissions in Yb3+–Tm3+ codoped stoichiometric Y7O6F9 powder. Phys. B Condens. Matter 2011, 406, 3256–3260. [Google Scholar] [CrossRef]
- Zaldo, C.; Cascales, C. High thermal sensitivity and the selectable upconversion color of Ln, Yb:Y6O5F8 nanotubes. Phys. Chem. Chem. Phys. 2014, 16, 23274–23285. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Xiong, H.; Wang, X.; Song, L.; Liu, Y.; Yang, J.; Wu, H.; Yang, C.; Gan, S. Size and morphology-controlled synthesis of vernier yttrium oxyfluoride towards enhanced photoluminescence and white light emission. New. J. Chem. 2018, 42, 11351–11357. [Google Scholar] [CrossRef]
- Xiang, G.-X.; Wang, G.-J.; Zhang, Z.-J.; Feng, H.; Zhao, J.-T.; Wang, J.; Sun, X.-Y.; Mao, R.-H.; Wang, Y. Multicolor luminescence properties of Ln7O6F9: RE3+ (Ln = Y, Lu; RE = Pr, Sm and Eu) nano-rods with bifurcation. J. Alloys Compd. 2017, 692, 471–477. [Google Scholar] [CrossRef]
- Park, S.; Yang, W.; Park, C.-Y.; Noh, M.; Choi, S.; Park, D.; Jang, H.S.; Cho, S.-H. Up-conversion routines of Er3+–Yb3+ doped Y6O5F8 and YOF phosphors. Mater. Res. Bull. 2015, 71, 25–29. [Google Scholar] [CrossRef]
- Saeed, N.A.M.; Coetsee, E.; Swart, H.C. Photoluminescence studies of a YOF phosphor synthesized by the pyrolysis method. Opt. Mater. 2019, 96, 109331. [Google Scholar] [CrossRef]
- Mahlik, S.; Malinowski, M.; Grinberg, M. High pressure luminescence and time resolved spectra of La2Be2O5:Pr3+. Opt. Mater. 2011, 34, 164–168. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Y.; Shen, X.; Wei, W. Concentration dependence of visible luminescence from Pr3+-doped phosphate glasses. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 206, 454–459. [Google Scholar] [CrossRef]
- Binnemans, K.; Görller-Walrand, C.; Adam, J.L. Spectroscopic properties of Gd3+-doped fluorozirconate glass. Chem. Phys. Lett. 1997, 280, 333–338. [Google Scholar] [CrossRef]
Formula | Y7O6F9 |
---|---|
Crystal system | orthorhombic |
Space group | Abm2(39) |
Cell parameters | a = 5.4191(1) Å |
b = 38.8414(8) Å | |
c = 5.5477(1) Å | |
α = β = γ = 90° | |
V = 1167.702 Å3 | |
2θ Range | 5° ≤ 2θ ≤ 90° |
Reliability factors | Rwp = 8.42% |
Rp = 6.39% | |
χ2 = 2.276 |
Samples | 3P0 lifetimes in µs | 1D2 lifetimes in µs |
---|---|---|
0.2%Pr3+, 10%Gd3+ | 18.84(2) | 132.40(1) |
0.6%Pr3+, 10%Gd3+ | 17.21(9) | 58.11(2) |
1.0%Pr3+, 10%Gd3+ | 15.89(1) | 54.71(1) |
1.4%Pr3+, 10%Gd3+ | 14.40(6) | 41.10(7) |
1.8%Pr3+, 10%Gd3+ | 13.78(2) | 28.45(2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, Y.; Hu, C.; Zhou, X.; Hao, J.; Li, W.; Li, H. Energy Transfer from Pr3+ to Gd3+ and Upconversion Photoluminescence Properties of Y7O6F9:Pr3+, Gd3+. Materials 2022, 15, 7680. https://doi.org/10.3390/ma15217680
Sun Y, Wang Y, Hu C, Zhou X, Hao J, Li W, Li H. Energy Transfer from Pr3+ to Gd3+ and Upconversion Photoluminescence Properties of Y7O6F9:Pr3+, Gd3+. Materials. 2022; 15(21):7680. https://doi.org/10.3390/ma15217680
Chicago/Turabian StyleSun, Yang, Yangbo Wang, Chengchao Hu, Xufeng Zhou, Jigong Hao, Wei Li, and Huaiyong Li. 2022. "Energy Transfer from Pr3+ to Gd3+ and Upconversion Photoluminescence Properties of Y7O6F9:Pr3+, Gd3+" Materials 15, no. 21: 7680. https://doi.org/10.3390/ma15217680
APA StyleSun, Y., Wang, Y., Hu, C., Zhou, X., Hao, J., Li, W., & Li, H. (2022). Energy Transfer from Pr3+ to Gd3+ and Upconversion Photoluminescence Properties of Y7O6F9:Pr3+, Gd3+. Materials, 15(21), 7680. https://doi.org/10.3390/ma15217680