The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Solutions
2.2. Measurement Procedure
2.3. Preparation of Working Electrodes
3. Results and Discussion
3.1. Electrochemical Studies
3.2. Microscopic Analysis
3.3. GO I and GO II Chemical Composition Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Górska, A.; Zambrzycki, M.; Paczosa-Bator, B.; Piech, R. New Electrochemical Sensor Based on Hierarchical Carbon Nanofibers with NiCo Nanoparticles and Its Application for Cetirizine Hydrochloride Determination. Materials 2022, 15, 3648. [Google Scholar] [CrossRef]
- Morawska, K.; Ciesielski, W.; Smarzewska, S. First electroanalytical studies of methoxyfenozide and its interactions with dsDNA. J. Electroanal. Chem. 2021, 882, 115030. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Rotko, M. Electrochemically Pretreated Sensor Based on Screen-Printed Carbon Modified with Pb Nanoparticles for Determination of Testosterone. Materials 2022, 15, 4948. [Google Scholar] [CrossRef]
- Piech, R.; Bugajna, A.; Baś, S.; Kubiak, W.W. Ultrasensitive determination of tungsten(VI) on pikomolar level in voltammetric catalytic adsorptive catechol-chlorate(V) system. J. Electroanal. Chem. 2010, 644, 74. [Google Scholar] [CrossRef]
- Mirceski, V.; Guziejewski, D.; Ciesielski, W. Theoretical Treatment of a Cathodic Stripping Mechanism of an Insoluble Salt Coupled with a Chemical Reaction in Conditions of Square Wave Voltammetry. Application to 6-Mercaptopurine-9-D-Riboside in the Presence of Ni(II). Electroanalysis 2011, 23, 1365. [Google Scholar] [CrossRef]
- Guziejewski, D.; Mirceski, V.; Jadresko, D. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate. Electroanalysis 2015, 27, 67. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry; Marcel Dekker Inc.: New York, NY, USA, 1996. [Google Scholar]
- Wang, J. Analytical Electrochemistry; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ates, A.K.; Er, E.; Celikkan, H.; Erk, N. Reduced graphene oxide/platinum nanoparticles/nafion nanocomposite as a novel 2D electrochemical sensor for voltammetric determination of aliskiren. New J. Chem. 2017, 41, 15320. [Google Scholar] [CrossRef]
- Qiu, X.; Yan, X.; Cen, K.; Sun, D.; Xu, L.; Tang, Y. Achieving Highly Electrocatalytic Performance by Constructing Holey Reduced Graphene Oxide Hollow Nanospheres Sandwiched by Interior and Exterior Platinum Nanoparticles. ACS Appl. Energy Mater. 2018, 1, 2341. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef]
- Brumfiel, G. Graphene gets ready for the big time. Nature 2009, 458, 390. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, Z.; Zhang, Y.; Morozov, S.V.; Stormer, H.L.; Zeitler, U.; Maan, J.C.; Boebinger, G.S.; Kim, P.; Geim, A.K. Room-Temperature Quantum Hall Effect in Graphene. Science 2007, 315, 1379. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027. [Google Scholar] [CrossRef]
- Hofmann, U.; Holst, R. Über die Säurenatur und die Methylierung von Graphitoxyd. Ber. Dtsch. Chem. Ges. B 1939, 72, 754. [Google Scholar] [CrossRef]
- Ruess, G. Über das Graphitoxyhydroxyd (Graphitoxyd). Monatsh. Chem. 1946, 76, 381. [Google Scholar] [CrossRef]
- Clauss, A.; Plass, R.; Boehm, H.P.; Hofmann, U. Untersuchungen zur Struktur des Graphitoxyds. Z. Anorg. Allg. Chem. 1957, 291, 205. [Google Scholar] [CrossRef]
- Scholz, W.; Boehm, H.P. Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Z. Anorg. Allg. Chem. 1969, 369, 327. [Google Scholar] [CrossRef]
- Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon 1988, 26, 357. [Google Scholar] [CrossRef]
- Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740. [Google Scholar] [CrossRef]
- Eda, G.; Chhowalla, M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 2010, 22, 2392. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, G.Y.; Bai, X.D.; Sun, X.M.; Wang, X.R.; Wang, E.G.; Dai, H.J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538. [Google Scholar] [CrossRef] [Green Version]
- Kim, F.; Cote, L.; Huang, J.X. Graphene Oxide: Surface Activity and Two-Dimensional Assembly. Adv. Mater. 2010, 22, 1954. [Google Scholar] [CrossRef]
- Erdem, A.; Eksin, E.; Isin, D.; Polat, D. Graphene Oxide Modified Chemically Activated Graphite Electrodes for Detection of microRNA. Electroanalysis 2017, 29, 1350. [Google Scholar] [CrossRef]
- Park, M.-O.; Noh, H.-B.; Park, D.-S.; Yoon, J.-H.; Shim, Y.-B. Long-life Heavy Metal Ions Sensor Based on Graphene Oxide-anchored Conducting Polymer. Electroanalysis 2017, 29, 514. [Google Scholar] [CrossRef]
- Smarzewska, S.; Miękoś, E.; Guziejewski, D.; Zieliński, M.; Burnat, B. Graphene oxide activation with a constant magnetic field. Anal. Chim. Acta 2018, 1011, 35. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Atty, S.A.; Salama, N.N.; Banks, C.E. Highly Selective Sensing Platform Utilizing Graphene Oxide and Multiwalled Carbon Nanotubes for the Sensitive Determination of Tramadol in the Presence of Co-Formulated Drugs. Electroanalysis 2017, 29, 1038. [Google Scholar] [CrossRef]
- Festinger, N.; Spilarewicz-Stanek, K.; Borowczyk, K.; Guziejewski, D.; Smarzewska, S. Highly Sensitive Determination of Tenofovir in Pharmaceutical Formulations and Patients Urine—Comparative Electroanalytical Studies Using Different Sensing Methods. Molecules 2022, 27, 1992. [Google Scholar] [CrossRef] [PubMed]
- Smarzewska, S.; Metelka, R.; Festinger, N.; Guziejewski, D.; Ciesielski, W. Comparative Study on Electroanalysis of Fenthion Using Silver Amalgam Film Electrode and Glassy Carbon Electrode Modified with Reduced Graphene Oxide. Electroanalysis 2017, 29, 1154. [Google Scholar] [CrossRef]
- Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, U.; Konig, E. Untersuchungen über Graphitoxyd. Z. Anorg Allg. Chem. 1937, 234, 311. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806. [Google Scholar] [CrossRef]
- Chng, E.L.K.; Pumera, M. The Toxicity of Graphene Oxides: Dependence on the Oxidative Methods Used. Chem. Eur. J. 2013, 19, 8227. [Google Scholar] [CrossRef]
- Yang, J.; Gunasekaran, S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 2013, 51, 36. [Google Scholar] [CrossRef]
- Fooladsaz, K.; Negahdary, M.; Rahimi, G.; Habibi-Tamijani, A.; Parsania, S.; Akbari-dastjerdi, H.; Sayad, A.; Jamaleddini, A.; Salahi, F.; Asadi, A. Dopamine Determination with a Biosensor Based on Catalase and Modified Carbon Paste Electrode with Zinc Oxide Nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 9892–9908. [Google Scholar]
- Robak, J.; Burnat, B.; Leniart, B.A.; Kisielewska, A.; Brycht, M.; Skrzypek, S. The effect of carbon material on the electroanalytical determination of 4-chloro-3-methylphenol using the sol-gel derived carbon ceramic electrodes. Sens. Act. B-Chem. 2016, 236, 318. [Google Scholar] [CrossRef]
- Rajawat, D.S.; Kumar, N.; Satsangee, S.P. Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder. J. Anal. Sci. Tech. 2014, 5, 19. [Google Scholar] [CrossRef]
- Zhang, H.; Hines, D.; Akins, D.L. Synthesis of a nanocomposite composed of reduced graphene oxide and gold nanoparticles. Dalton Trans. 2014, 43, 2670. [Google Scholar] [CrossRef] [PubMed]
- Spilarewicz-Stanek, K.; Kisielewska, A.; Ginter, J.; Bałuszyńska, K.; Piwoński, I. Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Adv. 2016, 6, 60056. [Google Scholar] [CrossRef] [Green Version]
- Spanò, S.F.; Isgrò, G.; Russo, P.; Fragalà, M.E.; Compagnini, G. Tunable properties of graphene oxide reduced by laser irradiation. Appl. Phys. A 2014, 117, 19. [Google Scholar] [CrossRef]
- Das, B.; Kundu, R.; Chakravarty, S. Preparation and characterization of graphene oxide from coal. Mat. Chem. Phys. 2022, 290, 126597. [Google Scholar] [CrossRef]
- Jahan, N.; Roy, H.; Reaz, A.H.; Arshi, S.; Rahman, E.; Firoz, S.H.; Islam, M.S. A comparative study on sorption behavior of graphene oxide and reduced graphene oxide towards methylene blue. Case Stud. Chem. Environ. Eng. 2022, 6, 100239. [Google Scholar] [CrossRef]
- Nawaz, M.; Miran, W.; Jang, J.; Lee, D.S. One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B 2017, 203, 85. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, 45030. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Lin, S.; Peng, T.; Liu, B. Microstructure and Spectral Characteristics of Graphene Oxide during Reduction. Integr. Ferroelectr. 2014, 151, 21. [Google Scholar] [CrossRef]
GO I | GO II | |
---|---|---|
Rq | 142.5 ± 5.3 | 184.0 ± 19.1 |
Ra | 104.0 ± 2.4 | 144.3 ± 14.4 |
Element | GO I | GO II |
---|---|---|
C | 85.44 ± 0.24 | 81.43 ± 0.13 |
H | 0.380 ± 0.020 | 0.390 ± 0.059 |
GO I | GO II | |
---|---|---|
C atomic% | 88.68 | 83.38 |
C weight% | 85.47 | 79.02 |
O atomic% | 11.32 | 16.62 |
O weight% | 14.53 | 20.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Festinger, N.; Kisielewska, A.; Burnat, B.; Ranoszek-Soliwoda, K.; Grobelny, J.; Koszelska, K.; Guziejewski, D.; Smarzewska, S. The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes. Materials 2022, 15, 7684. https://doi.org/10.3390/ma15217684
Festinger N, Kisielewska A, Burnat B, Ranoszek-Soliwoda K, Grobelny J, Koszelska K, Guziejewski D, Smarzewska S. The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes. Materials. 2022; 15(21):7684. https://doi.org/10.3390/ma15217684
Chicago/Turabian StyleFestinger, Natalia, Aneta Kisielewska, Barbara Burnat, Katarzyna Ranoszek-Soliwoda, Jarosław Grobelny, Kamila Koszelska, Dariusz Guziejewski, and Sylwia Smarzewska. 2022. "The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes" Materials 15, no. 21: 7684. https://doi.org/10.3390/ma15217684
APA StyleFestinger, N., Kisielewska, A., Burnat, B., Ranoszek-Soliwoda, K., Grobelny, J., Koszelska, K., Guziejewski, D., & Smarzewska, S. (2022). The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes. Materials, 15(21), 7684. https://doi.org/10.3390/ma15217684