Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc
Abstract
:1. Introduction
2. Computational Methods and Models
3. Results and Discussions
3.1. Structural Properties and Band Gap
3.2. Electronic Structures
3.3. Optical Absorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Zhan, T.; Pan, X.; He, H.; Huang, J.; Lu, B.; Ye, Z. UV electroluminescence emissions from high-quality ZnO/ZnMgO multiple quantum well active layer light-emitting diodes. RSC Adv. 2021, 11, 38949–38955. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.; Cheng, J.; Li, X.; Li, Y.; Li, M.; Xu, F.; Xue, J.; Yu, Z. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays. J. Alloys Compd. 2021, 860, 157917. [Google Scholar] [CrossRef]
- <i>Abed, C.; Ali, M.B.; Addad, A.; Elhouichet, H. Growth, structural and optical properties of ZnO-ZnMgO-MgO nanocomposites and their photocatalytic activity under sunlight irradiation. Mater. Res. Bull. 2019, 110, 230–238. [Google Scholar] [CrossRef]
- Alam, M.J.; Murkute, P.; Sushama, S.; Ghadi, H.; Paul, S.; Mondal, S.; Chakrabarti, S. Improving optical properties and controlling defect-bound states in ZnMgO thin films through ultraviolet–ozone annealing. Thin Solid Films 2020, 708, 138112. [Google Scholar] [CrossRef]
- Ren, S.; Wang, H.; Li, Y.; Li, H.; He, R.; Wu, L.; Li, W.; Zhang, J.; Wang, W.; Feng, L. Rapid thermal annealing on ZnMgO window layer for improved performance of CdTe solar cells. Sol. Energy Mater. Sol. Cells 2018, 187, 97–103. [Google Scholar] [CrossRef]
- Tahir, S.; Ashfaq, A.; Sani, G.R.; Sebastian Bonilla, R.; ur Rehman, U.; Mushtaq, S.; Ahmad, W.; Muhammad Khan, K.; Haneef, M.; Saeed, R. Enhanced thermoelectric performance of n-type MgZnO enabled via synergy of chemical bonding and grain boundaries modulation. Inorg. Chem. Commun. 2022, 141, 109567. [Google Scholar] [CrossRef]
- Trinkler, L.; Aulika, I.; Krieke, G.; Nilova, D.; Ruska, R.; Butikova, J.; Berzina, B.; Chou, M.M.C.; Chang, L.; Wen, M.C.; et al. Characterization of wurtzite Zn1−xMgxO epilayers grown on ScAlMgO4 substrate by methods of optical spectroscopy. J. Alloys Compd. 2022, 912, 165178. [Google Scholar] [CrossRef]
- Wang, J.; Tu, Y.; Yang, L.; Tolner, H. Theoretical investigation of the electronic structure and optical properties of zinc–doped magnesium oxide. J. Comput. Electron. 2016, 15, 1521–1530. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cai, B.; Hu, Z.; Liu, Y.; Zhang, S.; Zeng, H. The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: A first principles study. Curr. Appl. Phys. 2015, 15, 423–428. [Google Scholar] [CrossRef]
- Wen, M.; Lu, S.; Chang, L.; Chou, M.; Ploog, K. Epitaxial growth of rocksalt Zn1−xMgxO on MgO (100) substrate by molecular beam epitaxy. J. Cryst. Growth 2017, 477, 169–173. [Google Scholar] [CrossRef]
- González, R.; Monge, M.; Santiuste, J.M.; Pareja, R.; Chen, Y.; Kotomin, E.; Kukla, M.; Popov, A. Photoconversion of F-type centers in thermochemically reduced MgO single crystals. Phys. Rev. B 1999, 59, 4786. [Google Scholar] [CrossRef] [Green Version]
- Kuzovkov, V.; Popov, A.; Kotomin, E.; Monge, M.; Gonzalez, R.; Chen, Y. Kinetics of nanocavity formation based on F-center aggregation in thermochemically reduced MgO single crystals. Phys. Rev. B 2001, 64, 064102. [Google Scholar] [CrossRef] [Green Version]
- Popov, A.; Monge, M.; González, R.; Chen, Y.; Kotomin, E. Dynamics of F-center annihilation in thermochemically reduced MgO single crystals. Solid State Commun. 2001, 118, 163–167. [Google Scholar] [CrossRef]
- Uklein, A.; Multian, V.; Kuz’micheva, G.; Linnik, R.; Lisnyak, V.; Popov, A.; Gayvoronsky, V.Y. Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Opt. Mater. 2018, 84, 738–747. [Google Scholar] [CrossRef]
- Eya, H.I.; Ntsoenzok, E.; Dzade, N.Y. First-Principles Investigation of the Structural, Elastic, Electronic, and Optical Properties of α- and β-SrZrS3: Implications for Photovoltaic Applications. Materials 2020, 13, 978. [Google Scholar] [CrossRef] [Green Version]
- Schleife, A.; Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F. Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys. Rev. B 2009, 80, 035112. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Mortensen, J.J.; Jacobsen, K.W.; Thygesen, K.S. Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces. Phys. Rev. B 2011, 83, 245122. [Google Scholar] [CrossRef] [Green Version]
- Hüser, F.; Olsen, T.; Thygesen, K.S. How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2. Phys. Rev. B 2013, 88, 245309. [Google Scholar] [CrossRef] [Green Version]
- Olsen, T.; Latini, S.; Rasmussen, F.; Thygesen, K.S. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. Phys. Rev. Lett. 2016, 116, 056401. [Google Scholar] [CrossRef] [Green Version]
- Harun, K.; Salleh, N.; Bahri, D.; Yaakob, M.; Mohamad, A.A. DFT+U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results Phys. 2020, 16, 102829. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, H.; Wang, H.Q.; Zhang, L.; Kisslinger, K.; Kang, J. Interface and optical properties of Zn1−xMgxO films with Mg content of more than 70% grown on the (1210)-ZnO substrates. AIP Adv. 2021, 11, 075217. [Google Scholar] [CrossRef]
- Cora, I.; Baji, Z.; Fogarassy, Z.; Szabó, Z.; Pécz, B. Structural study of MgO and Mg-doped ZnO thin films grown by atomic layer deposition. Mater. Sci. Semicond. Process. 2019, 93, 6–11. [Google Scholar] [CrossRef]
- Schleife, A.; Bechstedt, F. Ab initio description of quasiparticle band structures and optical near–edge absorption of transparent conducting oxides. J. Mater. Res. 2012, 27, 2180–2189. [Google Scholar] [CrossRef] [Green Version]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C.; et al. The atomic simulation environment–a Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002. [Google Scholar] [CrossRef] [Green Version]
- Bahn, S.R.; Jacobsen, K.W. An object–oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, J.J.; Hansen, L.B.; Jacobsen, K.W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 2005, 71, 035109. [Google Scholar] [CrossRef] [Green Version]
- Enkovaara, J.; Rostgaard, C.; Mortensen, J.J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H.A.; et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 2010, 22, 253202. [Google Scholar] [CrossRef]
- Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T.T. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B 2010, 82, 115106. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taib, M.F.M.; Mustaffa, D.T.; Hussin, N.H.; Samat, M.H.; Ali, A.M.M.; Hassan, O.H.; Yahya, M.Z.A. First principles study on Zn doped MgO using Hubbard U correction. Mater. Res. Express 2019, 6, 094012. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three–dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Van der Walt, S.; Colbert, S.C.; Varoquaux, G. The numpy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Shimada, K.; Takahashi, N.; Nakagawa, Y.; Hiramatsu, T.; Kato, H. Nonlinear characteristics of structural properties and spontaneous polarization in wurtzite MgxZn1−xO: A first-principles study. Phys. Rev. B 2013, 88, 075203. [Google Scholar] [CrossRef]
- Zhang, D.N.; Zhao, L.; Wang, J.F.; Li, Y.L. Electronic structures and the stability of MgO surface: Density functional study. Surf. Rev. Lett. 2015, 22, 1550037. [Google Scholar] [CrossRef]
- Fritsch, D.; Schmidt, H.; Grundmann, M. Pseudopotential band structures of rocksalt MgO, ZnO, and Mg1−xZnxO. Appl. Phys. Lett. 2006, 88, 134104. [Google Scholar] [CrossRef]
- Choopun, S.; Vispute, R.D.; Yang, W.; Sharma, R.P.; Venkatesan, T.; Shen, H. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films. Appl. Phys. Lett. 2002, 80, 1529–1531. [Google Scholar] [CrossRef]
- Wang, L.; Ju, Z.; Shan, C.; Zheng, J.; Li, B.; Zhang, Z.; Yao, B.; Zhao, D.; Shen, D.; Zhang, J. Epitaxial growth of high quality cubic MgZnO films on MgO substrate. J. Cryst. Growth 2010, 312, 875–877. [Google Scholar] [CrossRef]
- Liang, H.; Mei, Z.; Liu, Z.; Guo, Y.; Azarov, A.; Kuznetsov, A.; Hallen, A.; Du, X. Growth of single-phase Mg0.3Zn0.70 films suitable for solar-blind optical devices on RS-MgO substrates. Thin Solid Films 2012, 520, 1705–1708. [Google Scholar] [CrossRef]
- Alaani, M.A.R.; Koirala, P.; Phillips, A.B.; Liyanage, G.K.; Awni, R.A.; Sapkota, D.R.; Ramanujam, B.; Heben, M.J.; O’Leary, S.K.; Podraza, N.J.; et al. Optical properties of magnesium-zinc oxide for thin film photovoltaics. Materials 2021, 14, 5649. [Google Scholar] [CrossRef] [PubMed]
- Chetia, S.K.; Rajput, P.; Ajimsha, R.S.; Singh, R.; Das, A.K.; Kumar, R.; Padhi, P.S.; Sinha, A.K.; Jha, S.N.; Sharma, T.K.; et al. Bandgap tunability and local structure of MgxZn1−xO (0≤x≤1) thin films grown by RF magnetron co-sputterings. Appl. Phys. A 2022, 128, 724. [Google Scholar] [CrossRef]
- Garza, A.J.; Scuseria, G.E. Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 2016, 7, 4165–4170. [Google Scholar] [CrossRef] [Green Version]
- Drissi, N.; Gueddim, A.; Bouarissa, N. First-principles study of rocksalt MgxZn1−xO: Band structure and optical spectra. Philos. Mag. 2020, 100, 1620–1635. [Google Scholar] [CrossRef]
- Algarni, H.; Gueddim, A.; Bouarissa, N.; Khan, M.A.; Ziani, H. Crystal structure and electronic properties of wurtzite MgxZn1−xO: Ab initio study. Results Phys. 2019, 15, 102694. [Google Scholar] [CrossRef]
- Calzolari, A.; Nardelli, M.B. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields. Sci. Rep. 2013, 3, 2999. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wu, Y.; Lv, Y.; Zhu, Y. Correlation Effects on Lattice Relaxation and Electronic Structure of ZnO within the GGA+U Formalism. J. Phys. Chem. C 2013, 117, 26029–26039. [Google Scholar] [CrossRef]
x | a (Å) | b (Å) | c (Å) | () | () | () |
---|---|---|---|---|---|---|
RS, WZ | ||||||
0.125 | 8.429, =a | 4.213, =b | 4.213, 5.196 | =, = | =, = | =, = |
0.25 | 8.453, =a | 4.220, 6.521 | 4.220, 5.183 | =, = | 89.999, = | =, 120.005 |
0.375 | 8.446, 6.519 | 4.231, 6.518 | 4.231, 5.167 | =, 90.024 | =, 89.978 | =, 119.860 |
0.5 | 8.506, 6.532 | 4.232, 6.517 | 4.232, 5.148 | =, 89.951 | 89.995, 90.025 | =, 119.925 |
0.625 | 8.502, 6.529 | 4.248, 6.529 | 4.248, 5.125 | =, 89.980 | 89.999, 90.020 | =, 119.844 |
0.75 | 8.527, 6.542 | 4.250, 6.542 | 4.253, 5.102 | =, = | 89.885, = | =, 119.997 |
0.875 | 8.533, 6.554 | 4.258, 6.554 | 4.264, 5.074 | =, 89.999 | 89.946, 90.001 | =, 119.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-P.; Piskunov, S.; Trinkler, L.; Ming-Chi Chou, M.; Chang, L. Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc. Materials 2022, 15, 7689. https://doi.org/10.3390/ma15217689
Lin Y-P, Piskunov S, Trinkler L, Ming-Chi Chou M, Chang L. Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc. Materials. 2022; 15(21):7689. https://doi.org/10.3390/ma15217689
Chicago/Turabian StyleLin, Yin-Pai, Sergei Piskunov, Laima Trinkler, Mitch Ming-Chi Chou, and Liuwen Chang. 2022. "Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc" Materials 15, no. 21: 7689. https://doi.org/10.3390/ma15217689
APA StyleLin, Y. -P., Piskunov, S., Trinkler, L., Ming-Chi Chou, M., & Chang, L. (2022). Electronic and Optical Properties of Rocksalt Mg1−xZnxO and Wurtzite Zn1−xMgxO with Varied Concentrations of Magnesium and Zinc. Materials, 15(21), 7689. https://doi.org/10.3390/ma15217689