Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors
Abstract
:1. Introduction
2. Methods and Formulas
2.1. Strain-Dependent TB Hamiltonian for Sp2 Piezoelectric Crystals
2.2. General Formulas for Electronic Piezoelectricity
2.3. Details of DFT Computation
3. Results and Discussions
3.1. Bond-Orbital-Resolved Piezoelectricity in Generic Sp2 Crystals
3.2. Valley Model for the Anomalous π-Piezoelectricity
3.2.1. Correlation between π-Piezoelectric Coefficient and VHC
3.2.2. π-Piezoelectricity as a Hall-Type Response to Pseudo-Electric-Field
3.3. Application to Typical sp2 Crystal and BNG Superlattice
3.3.1. Intrinsic Piezoelectricity of Typical Sp2 Crystals
3.3.2. Engineered Piezoelectricity of BNG Superlattice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899–915. [Google Scholar] [CrossRef]
- King-Smith, R.D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Berry-phase theory of proper piezoelectric response. J. Phys. Chem. Solids 2000, 61, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Shindou, R.; Imura, K.-I. Noncommutative geometry and non-Abelian Berry phase in the wave-packet dynamics of Bloch electrons. Nucl. Phys. B 2005, 720, 399–435. [Google Scholar] [CrossRef] [Green Version]
- Varjas, D.; Grushin, A.G.; Ilan, R.; Moore, J.E. Dynamical Piezoelectric and Magnetopiezoelectric Effects in Polar Metals from Berry Phases and Orbital Moments. Phys. Rev. Lett. 2016, 117, 257601. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z.; Li, J.; Tan, J.; Wang, B.; Liu, Y. Tight-binding piezoelectric theory and electromechanical coupling correlations for transition metal dichalcogenide monolayers. Phys. Rev. B 2018, 98, 125402. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Chang, M.-C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.L. Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 2006, 96, 077206. [Google Scholar] [CrossRef] [Green Version]
- Carollo, A.; Valenti, D.; Spagnolo, B. Geometry of quantum phase transitions. Phys. Rep. 2020, 838, 1–72. [Google Scholar] [CrossRef]
- Volovik, G.E. Quantum Phase Transitions from Topology in Momentum Space; Springer: Berlin/Heidelberg, Germany, 2007; Volume 718, pp. 31–73. [Google Scholar]
- Yu, J.; Liu, C.-X. Piezoelectricity and topological quantum phase transitions in two-dimensional spin-orbit coupled crystals with time-reversal symmetry. Nat. Commun. 2020, 11, 2290. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.; Ordejón, P.; Martin, R.M.; Chiappe, G. Quantum phase transitions involving a change in polarization. Phys. Rev. B 1996, 54, 13515–13528. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Lee, C.E. Strain-induced topological phase transition with inversion of the in-plane electric polarization in tiny-gap semiconductor SiGe monolayer. Sci. Rep. 2020, 10, 11300. [Google Scholar] [CrossRef] [PubMed]
- Duerloo, K.-A.N.; Ong, M.T.; Reed, E.J. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876. [Google Scholar] [CrossRef]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef]
- Hinchet, R.; Khan, U.; Falconi, C.; Kim, S.-W. Piezoelectric properties in two-dimensional materials: Simulations and experiments. Mater. Today 2018, 21, 611–630. [Google Scholar] [CrossRef]
- Zelisko, M.; Hanlumyuang, Y.; Yang, S.; Liu, Y.; Lei, C.; Li, J.; Ajayan, P.M.; Sharma, P. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 2014, 5, 4284. [Google Scholar] [CrossRef] [Green Version]
- Ares, P.; Cea, T.; Holwill, M.; Wang, Y.B.; Roldan, R.; Guinea, F.; Andreeva, D.V.; Fumagalli, L.; Novoselov, K.S.; Woods, C.R. Piezoelectricity in Monolayer Hexagonal Boron Nitride. Adv. Mater. 2020, 32, e1905504. [Google Scholar] [CrossRef] [Green Version]
- Droth, M.; Burkard, G.; Pereira, V.M. Piezoelectricity in planar boron nitride via a geometric phase. Phys. Rev. B 2016, 94, 075404. [Google Scholar] [CrossRef] [Green Version]
- Rostami, H.; Guinea, F.; Polini, M.; Roldán, R. Piezoelectricity and valley chern number in inhomogeneous hexagonal 2D crystals. NPJ 2D Mater. Appl. 2018, 2, 15. [Google Scholar] [CrossRef]
- Shi, J.; Han, C.; Wang, X.; Yun, S. Electronic, elastic and piezoelectric properties of boron-V group binary and ternary monolayers. Phys. B Condens. Matter 2019, 574, 311634. [Google Scholar] [CrossRef]
- Alyörük, M.M. Piezoelectricity in monolayer B C N structures: A first principles study. Comput. Mater. Sci. 2021, 195, 110505. [Google Scholar] [CrossRef]
- Voon, L.C.L.Y.; Willatzen, M.; Wang, Z. Model Calculation of the Piezoelectric Coefficient of Hexagonal 2D Materials. Adv. Theory Simul. 2018, 2, 1800186. [Google Scholar] [CrossRef]
- Bistoni, O.; Barone, P.; Cappelluti, E.; Benfatto, L.; Mauri, F. Giant effective charges and piezoelectricity in gapped graphene. 2D Mater. 2019, 6, 045015. [Google Scholar] [CrossRef] [Green Version]
- Drissi, L.B.; Sadki, K.; Kourra, M.-H. Mechanical response of SiC sheet under strain. Mater. Chem. Phys. 2017, 201, 199–206. [Google Scholar] [CrossRef]
- Hess, P. Bonding, structure, and mechanical stability of 2D materials: The predictive power of the periodic table. Nanoscale Horiz. 2021, 6, 856–892. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, J.N.; Piéchon, F.; Goerbig, M.O.; Montambaux, G. Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models. Eur. Phys. J. B 2010, 77, 351–362. [Google Scholar] [CrossRef]
- Gusynin, V.; Sharapov, S.; Carbotte, J.P. Ac Conductivity of Graphene: From Tight-Binding Model to 2 + 1-Dimensional Quantum Electrodynamics. Int. J. Mod. Phys. B 2012, 21, 4611–4658. [Google Scholar] [CrossRef] [Green Version]
- Vozmediano, M.; Katsnelson, M.; Guinea, F. Gauge fields in graphene. Phys. Rep. 2010, 496, 109–148. [Google Scholar] [CrossRef]
- Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrell, P.C.; Fronzi, M.; Shepelin, N.A.; Corletto, A.; Winkler, D.A.; Ford, M.; Shapter, J.G.; Ellis, A.V. A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 2022, 51, 650–671. [Google Scholar] [CrossRef] [PubMed]
- da Cunha Rodrigues, G.; Zelenovskiy, P.; Romanyuk, K.; Luchkin, S.; Kopelevich, Y.; Kholkin, A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015, 6, 7572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, M.T.; Duerloo, K.-A.N.; Reed, E.J. The Effect of Hydrogen and Fluorine Coadsorption on the Piezoelectric Properties of Graphene. J. Phys. Chem. C 2013, 117, 3615–3620. [Google Scholar] [CrossRef] [Green Version]
- El-Kelany, K.E.; Carbonnière, P.; Erba, A.; Rérat, M. Inducing a Finite In-Plane Piezoelectricity in Graphene with Low Concentration of Inversion Symmetry-Breaking Defects. J. Phys. Chem. C 2015, 119, 8966–8973. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.C.; Koster, G.F. Simplified LCAO Method for the Periodic Potential Problem. Phys. Rev. 1954, 94, 1498–1524. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, H.; Neto, A.H.C.; Fal’Ko, V.I.; Guinea, F. Spin-orbit coupling assisted by flexural phonons in graphene. Phys. Rev. B 2012, 86, 245411. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Rösner, M.; Schulz, A.; Wehling, T.O.; Katsnelson, M.I. Electronic structures and optical properties of partially and fully fluorinated graphene. Phys. Rev. Lett. 2015, 114, 047403. [Google Scholar] [CrossRef]
- Rezaei, H.; Phirouznia, A. Modified spin–orbit couplings in uniaxially strained graphene. Eur. Phys. J. B 2018, 91, 295. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B Condens. Matter 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Harrison, W.A. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Sai, N.; Mele, E.J. Microscopic theory for nanotube piezoelectricity. Phys. Rev. B 2003, 68, 241405. [Google Scholar] [CrossRef] [Green Version]
- Bhowal, S.; Vignale, G. Orbital Hall effect as an alternative to valley Hall effect in gapped graphene. Phys. Rev. B 2021, 103, 195309. [Google Scholar] [CrossRef]
- Yao, W.; Yang, S.A.; Niu, Q. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 2009, 102, 096801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Morpurgo, A.F.; Büttiker, M.; Martin, I. Marginality of bulk-edge correspondence for single-valley Hamiltonians. Phys. Rev. B 2010, 82, 245404. [Google Scholar] [CrossRef] [Green Version]
- von Oppen, F.; Guinea, F.; Mariani, E. Synthetic electric fields and phonon damping in carbon nanotubes and graphene. Phys. Rev. B 2009, 80, 075420. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, A.; Abedpour, N.; Asgari, R.; Cortijo, A.; Vozmediano, M.A.H. Topological electric current from time-dependent elastic deformations in graphene. Phys. Rev. B 2013, 88, 125406. [Google Scholar] [CrossRef] [Green Version]
- Galvani, T.; Paleari, F.; Miranda, H.P.C.; Molina-Sánchez, A.; Wirtz, L.; Latil, S.; Amara, H.; Ducastelle, F. Excitons in boron nitride single layer. Phys. Rev. B 2016, 94, 125303. [Google Scholar] [CrossRef] [Green Version]
- Drissi, L.B.; Ramadan, F.Z. Many body effects study of electronic & optical properties of silicene–graphene hybrid. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 68, 38–41. [Google Scholar]
- Qin, X.; Liu, Y.; Li, X.; Xu, J.; Chi, B.; Zhai, D.; Zhao, X. Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study. J. Phys. Chem. Lett. 2015, 6, 1333–1339. [Google Scholar] [CrossRef]
- Shu, H.; Guo, J.; Niu, X. Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. J. Mater. Sci. 2018, 54, 2278–2288. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, D.; Li, P.; Yu, J.; Zhang, Y.; Xu, J. Tight-binding model for electronic structure of hexagonal boron phosphide monolayer and bilayer. J. Phys. Condens. Matter 2019, 31, 285501. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, A.; Ghaffarian, M. Topological viewpoint of two-dimensional group III–V and IV–IV compounds in the presence of electric field and spin–orbit coupling by density functional theory and tight-binding model. J. Phys. Condens. Matter 2022, 34, 145502. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, M.; Zhang, Y.; Liu, Z. Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. Small 2016, 12, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, M.; Oswald, W.; Wu, Z. Bandgap opening by patterning graphene. Sci. Rep. 2013, 3, srep02289. [Google Scholar] [CrossRef] [Green Version]
- Parmenter, R.H. Energy Levels of a Disordered Alloy. Phys. Rev. 1955, 97, 587–598. [Google Scholar] [CrossRef]
- Nascimento, R.; Martins, J.D.R.; Batista, R.J.C.; Chacham, H. Band Gaps of BN-Doped Graphene: Fluctuations, Trends, and Bounds. J. Phys. Chem. C 2015, 119, 5055–5061. [Google Scholar] [CrossRef]
- Dvorak, M.; Wu, Z. Dirac point movement and topological phase transition in patterned graphene. Nanoscale 2015, 7, 3645–3650. [Google Scholar] [CrossRef]
- Xiu, S.L.; Gong, L.; Wang, V.; Liang, Y.Y.; Chen, G.; Kawazoe, Y. Degenerate Perturbation in Band-Gap Opening of Graphene Superlattice. J. Phys. Chem. C 2014, 118, 8174–8180. [Google Scholar] [CrossRef]
- Sohier, T.; Calandra, M.; Park, C.-H.; Bonini, N.; Marzari, N.; Mauri, F. Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation. Phys. Rev. B 2014, 90, 125414. [Google Scholar] [CrossRef] [Green Version]
- Aggoune, W.; Rezouali, K.; Belkhir, M.A. Strong excitonic effects in hydrogen-graphene-fluorine janus graphene. Phys. Status Solidi (b) 2016, 253, 712–717. [Google Scholar] [CrossRef]
- Enaldiev, V.V.; Zólyomi, V.; Yelgel, C.; Magorrian, S.J.; Fal’Ko, V.I. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Phys. Rev. Lett. 2020, 124, 206101. [Google Scholar] [CrossRef] [PubMed]
- Ganchev, B.; Drummond, N.; Aleiner, I.; Fal’Ko, V. Three-particle complexes in two-dimensional semiconductors. Phys. Rev. Lett. 2015, 114, 107401. [Google Scholar] [CrossRef] [PubMed]
Materials | ||||||||
---|---|---|---|---|---|---|---|---|
BN | 1.44 a | 6.00 a (7.25 b) | −2.30 a (−2.30 b) | 2.61 (3.15) | 0.51 (0.44) | 2.65 (2.17) | 2.99 (2.57) | 3.71 c |
SiC | 1.78 d | 2.56 d (3.48 e) | −1.74 d (−1.64 f) | 1.47 (2.12) | 0.70 (0.59) | 3.26 (2.57) | 3.31 (2.77) | 3.70 g |
BP | 1.85 d | 1.30 d (1.83 h) | −1.82 d (−1.84 i) | 0.71 (0.99) | 0.85 (0.79) | 4.00 (3.69) | 3.86 (3.60) | 4.25 j |
BAs | 1.93 d | 0.70 d (1.24 k) | −1.46 d (−1.55 l) | 0.48 (0.80) | 0.90 (0.83) | 4.02 (3.72) | 3.91 (3.62) | 4.32 j |
BSb | 2.13 d | 0.33 d (0.73 h) | −1.40 d (−1.34 l) | 0.24 (0.55) | 0.95 (0.88) | 3.86 (3.62) | 3.75 (3.49) | 4.51 j |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, Y.; Wang, B. Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors. Materials 2022, 15, 7788. https://doi.org/10.3390/ma15217788
Wang Z, Liu Y, Wang B. Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors. Materials. 2022; 15(21):7788. https://doi.org/10.3390/ma15217788
Chicago/Turabian StyleWang, Zongtan, Yulan Liu, and Biao Wang. 2022. "Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors" Materials 15, no. 21: 7788. https://doi.org/10.3390/ma15217788
APA StyleWang, Z., Liu, Y., & Wang, B. (2022). Bond-Orbital-Resolved Piezoelectricity in Sp2-Hybridized Monolayer Semiconductors. Materials, 15(21), 7788. https://doi.org/10.3390/ma15217788