Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates
Abstract
:1. Introduction
2. Experimental Details
3. Experiment
3.1. Mixing Proportions
3.2. Compaction Method
3.3. Measurement of Material Properties
4. Test Results and Discussion
4.1. Total Void Ratio
4.2. Permeability
4.3. Compressive Strength of CBA Pervious Concrete
4.4. Splitting Tensile Strength of the CBA Pervious Concrete
4.5. Flexural Tensile Strength of the CBA Pervious Concrete
5. Relationships between Test Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, S.; Arshad, U.; Abbass, W.; Nehdi, M.L.; Ahmed, A. Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainability 2020, 12, 10631. [Google Scholar] [CrossRef]
- Kim, H.-K. Coal Bottom Ash. In Sustainable Concrete Made with Ashes and Dust from Different Sources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–60. [Google Scholar]
- Al Biajawi, M.I.; Embong, R.; Muthusamy, K.; Ismail, N.; Obianyo, I.I. Recycled Coal Bottom Ash as Sustainable Materials for Cement Replacement in Cementitious Composites: A Review. Constr. Build. Mater. 2022, 338, 127624. [Google Scholar] [CrossRef]
- Gooi, S.; Mousa, A.A.; Kong, D. A Critical Review and Gap Analysis on the Use of Coal Bottom Ash as a Substitute Constituent in Concrete. J. Clean. Prod. 2020, 268, 121752. [Google Scholar] [CrossRef]
- Muthusamy, K.; Rasid, M.H.; Jokhio, G.A.; Mokhtar Albshir Budiea, A.; Hussin, M.W.; Mirza, J. Coal Bottom Ash as Sand Replacement in Concrete: A Review. Constr. Build. Mater. 2020, 236, 117507. [Google Scholar] [CrossRef]
- Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P. Use of Coal Ash as Geopolymer Binder and Coarse Aggregate in Pervious Concrete. Constr. Build. Mater. 2015, 96, 289–295. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Abdul Patah, M.F.; Ibrahim, M.R.; Karim, M.R. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability 2021, 13, 8031. [Google Scholar] [CrossRef]
- Jeong, S.-T.; Bui, Q.-T.; Yang, I.-H. A Comparative Study of the Thermal Conductivities of CBA Porous Concretes. Materials 2022, 15, 5204. [Google Scholar] [CrossRef]
- Ćosić, K.; Korat, L.; Ducman, V.; Netinger, I. Influence of Aggregate Type and Size on Properties of Pervious Concrete. Constr. Build. Mater. 2015, 78, 69–76. [Google Scholar] [CrossRef]
- Strieder, H.L.; Dutra, V.F.P.; Graeff, Â.G.; Núñez, W.P.; Merten, F.R.M. Performance Evaluation of Pervious Concrete Pavements with Recycled Concrete Aggregate. Constr. Build. Mater. 2022, 315, 125384. [Google Scholar] [CrossRef]
- Park, S.B.; Il Jang, Y.; Lee, J.; Lee, B.J. An Experimental Study on the Hazard Assessment and Mechanical Properties of Porous Concrete Utilizing Coal Bottom Ash Coarse Aggregate in Korea. J. Hazard. Mater. 2009, 166, 348–355. [Google Scholar] [CrossRef]
- Kováč, M.; Sičáková, A. Pervious Concrete as an Environmental Solution for Pavements: Focus on Key Properties. Environments 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, L.G.; Feng, J.J.; Lu, Z.C.; Xie, H.Z.; Xiao, B.F.; Kwan, A.K.H.; Jiao, C.J. Effects of Aggregate Bulking and Film Thicknesses on Water Permeability and Strength of Pervious Concrete. Powder Technol. 2022, 396, 743–753. [Google Scholar] [CrossRef]
- Pereira da Costa, F.B.; Haselbach, L.M.; da Silva Filho, L.C.P. Pervious Concrete for Desired Porosity: Influence of w/c Ratio and a Rheology-Modifying Admixture. Constr. Build. Mater. 2021, 268, 121084. [Google Scholar] [CrossRef]
- Bonicelli, A.; Giustozzi, F.; Crispino, M. Experimental Study on the Effects of Fine Sand Addition on Differentially Compacted Pervious Concrete. Constr. Build. Mater. 2015, 91, 102–110. [Google Scholar] [CrossRef]
- KS F 2504; Standard Test Method for Density and Absorption of CBA. Korea Industrial Standards: Seoul, Korea, 2010.
- Kim, H.K.; Lee, H.K. Use of Power Plant Bottom Ash as Fine and Coarse Aggregates in High-Strength Concrete. Constr. Build. Mater. 2011, 25, 1115–1122. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Properties of Concrete Containing High Volumes of Coal Bottom Ash as Fine Aggregate. J. Clean. Prod. 2015, 91, 269–278. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of Coal Bottom Ash and Fly Ash in Concrete as Replacement for Sand and Cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeon, J.H.; Lee, H.K. Flow, Water Absorption, and Mechanical Characteristics of Normal- and High-Strength Mortar Incorporating Fine Bottom Ash Aggregates. Constr. Build. Mater. 2012, 26, 249–256. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Mahmud, H.B.; Ghuan, T.C.; Chin, A.B.; Kuenzel, C.; Ranjbar, N. Safe Disposal of Coal Bottom Ash by Solidification and Stabilization Techniques. Constr. Build. Mater. 2019, 197, 705–715. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. Porosity and Permeability of Foamed Concrete. Cem. Concr. Res. 2001, 31, 805–812. [Google Scholar] [CrossRef]
- BS EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2019.
- EN 12390-6:2009; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. British Standards Institution: London, UK, 2019.
- BS EN 12390-5:2019; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. British Standards Institution: London, UK, 2019.
- Debnath, B.; Sarkar, P.P. Permeability Prediction and Pore Structure Feature of Pervious Concrete Using Brick as Aggregate. Constr. Build. Mater. 2019, 213, 643–651. [Google Scholar] [CrossRef]
- Zhu, H.; Wen, C.; Wang, Z.; Li, L. Study on the Permeability of Recycled Aggregate Pervious Concrete with Fibers. Materials 2020, 13, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Zhang, J.; Huang, D.; Liu, Z.; Hou, F.; Cui, S.; Zhang, L.; Wang, Z. Experimental Study on the Relationship between Permeability and Strength of Pervious Concrete. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Torres, A.; Aguayo, F.; Gaedicke, C.; Nerby, P.; Cavazos, M.; Nerby, C. Developing High Strength Pervious Concrete Mixtures with Local Materials. J. Mater. Sci. Chem. Eng. 2020, 8, 20–34. [Google Scholar]
- Torres, A.; Hu, J.; Ramos, A. The Effect of the Cementitious Paste Thickness on the Performance of Pervious Concrete. Constr. Build. Mater. 2015, 95, 850–859. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, D.; Liu, T.; Zhou, A. Influence of Paste Coating Thickness on the Compressive Strength, Permeability, and Mesostructure of Permeable Concrete. Constr. Build. Mater. 2021, 299, 123994. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, T.; Yang, Y.; Lin, Z.; Wei, J.; Yu, Q. Maximum Paste Coating Thickness without Voids Clogging of Pervious Concrete and Its Relationship to the Rheological Properties of Cement Paste. Constr. Build. Mater. 2018, 168, 732–746. [Google Scholar] [CrossRef]
- Sahdeo, S.K.; Chandrappa, A.; Biligiri, K.P. Effect of Compaction Type and Compaction Efforts on Structural and Functional Properties of Pervious Concrete. Trans. Dev. Econ. 2021, 7, 19. [Google Scholar] [CrossRef]
- Yang, L.; Kou, S.; Song, X.; Lu, M.; Wang, Q. Analysis of Properties of Pervious Concrete Prepared with Difference Paste-Coated Recycled Aggregate. Constr. Build. Mater. 2021, 269, 121244. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Sebaibi, N.; Boutouil, M.; Leleyter, L.; Baraud, F. A Modified Method for the Design of Pervious Concrete Mix. Constr. Build. Mater. 2014, 73, 271–282. [Google Scholar] [CrossRef]
Aggregate Size | Water Absorption | SSD Density | Oven-Dried Density |
---|---|---|---|
(%) | (g/cm3) | (g/cm3) | |
2.5–5.0 mm | 10.7 | 1.71 | 1.54 |
2.5–5.0 mm (80%) + 1.2–2.5 mm (20%) | 7.75 | 1.73 | 1.61 |
1.2~2.5 mm | 6.13 | 1.75 | 1.65 |
Mixture | W/C Ratio | Mixture Proportions (kg/m3) | C.A. | Compaction Levels | |||
---|---|---|---|---|---|---|---|
Water | OPC | CBA | MPa | ||||
1.2~2.5 mm | 2.5~5.0 mm | ||||||
S-W25-C0.5 | 0.25 | 110.0 | 440.0 | - | 1206.1 | 38.5 | 0.5 |
S-W25-C1.5 | 110.0 | 440.0 | - | 1206.1 | 38.5 | 1.5 | |
S-W25-C3.0 | 110.0 | 440.0 | - | 1206.1 | 38.5 | 3.0 | |
S-W30-C0.5 | 0.30 | 110.0 | 366.7 | - | 1245.9 | 38.5 | 0.5 |
S-W30-C1.5 | 110.0 | 366.7 | - | 1245.9 | 38.5 | 1.5 | |
S-W30-C3.0 | 110.0 | 366.7 | - | 1245.9 | 38.5 | 3.0 | |
S-W35-C0.5 | 0.35 | 110.0 | 314.3 | - | 1274.3 | 38.5 | 0.5 |
S-W35-C1.5 | 110.0 | 314.3 | - | 1274.3 | 38.5 | 1.5 | |
S-W35-C3.0 | 110.0 | 314.3 | - | 1274.3 | 38.5 | 3.0 | |
H-W25-C0.5 | 0.25 | 110.0 | 440.0 | 246.9 | 964.9 | 38.5 | 0.5 |
H-W25-C1.5 | 110.0 | 440.0 | 246.9 | 964.9 | 38.5 | 1.5 | |
H-W25-C3.0 | 110.0 | 440.0 | 246.9 | 964.9 | 38.5 | 3.0 | |
H-W30-C0.5 | 0.30 | 110.0 | 366.7 | 255.0 | 996.7 | 38.5 | 0.5 |
H-W30-C1.5 | 110.0 | 366.7 | 255.0 | 996.7 | 38.5 | 1.5 | |
H-W30-C3.0 | 110.0 | 366.7 | 255.0 | 996.7 | 38.5 | 3.0 | |
H-W35-C0.5 | 0.35 | 110.0 | 314.3 | 260.8 | 1019.5 | 38.5 | 0.5 |
H-W35-C1.5 | 110.0 | 314.3 | 260.8 | 1019.5 | 38.5 | 1.5 | |
H-W35-C3.0 | 110.0 | 314.3 | 260.8 | 1019.5 | 38.5 | 3.0 |
Mixture | Total Void Ratio | Coefficient of Water Permeability | Compressive Strength | Splitting Tensile Strength | Flexural Tensile Strength | |||||
---|---|---|---|---|---|---|---|---|---|---|
(%) | (mm/s) | (MPa) | (MPa) | (MPa) | ||||||
Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | |
S-W25-C0.5 | 33.9 | 0.5 | 5.27 | 0.21 | 3.82 | 0.30 | 0.69 | 0.03 | 0.94 | 0.20 |
S-W25-C1.5 | 27.6 | 1.1 | 1.29 | 0.25 | 4.38 | 0.20 | 0.76 | 0.04 | 1.87 | 0.41 |
S-W25-C3.0 | 23.8 | 0.3 | 0.08 | 0.06 | 5.05 | 0.30 | 0.93 | 0.03 | 2.34 | 0.30 |
S-W30-C0.5 | 35.2 | 1.2 | 5.33 | 0.33 | 3.40 | 0.19 | 0.58 | 0.02 | 0.88 | 0.35 |
S-W30-C1.5 | 29.5 | 0.8 | 1.58 | 0.27 | 4.19 | 0.20 | 0.63 | 0.04 | 1.55 | 0.22 |
S-W30-C3.0 | 25.3 | 0.6 | 0.1 | 0.02 | 4.81 | 0.45 | 0.75 | 0.06 | 1.85 | 0.27 |
S-W35-C0.5 | 36.5 | 0.3 | 5.62 | 0.25 | 2.77 | 0.16 | 0.56 | 0.02 | 0.82 | 0.06 |
S-W35-C1.5 | 33.4 | 0.5 | 1.62 | 0.32 | 3.16 | 0.39 | 0.58 | 0.03 | 1.32 | 0.05 |
S-W35-C3.0 | 27.3 | 0.7 | 0.12 | 0.03 | 3.55 | 0.41 | 0.68 | 0.02 | 1.68 | 0.17 |
H-W25-C0.5 | 30.6 | 1.8 | 4.47 | 0.61 | 4.74 | 0.53 | 0.86 | 0.06 | 1.29 | 0.12 |
H-W25-C1.5 | 24.9 | 2.8 | 0.80 | 0.25 | 6.37 | 0.27 | 0.94 | 0.04 | 2.31 | 0.08 |
H-W25-C3.0 | 19.3 | 2.0 | 0.06 | 0.33 | 7.85 | 0.87 | 1.05 | 0.08 | 2.70 | 0.11 |
H-W30-C0.5 | 31.3 | 3.9 | 5.00 | 0.51 | 4.62 | 0.14 | 0.75 | 0.02 | 1.10 | 0.01 |
H-W30-C1.5 | 26.8 | 2.8 | 1.16 | 0.61 | 5.94 | 0.50 | 0.87 | 0.01 | 1.96 | 0.02 |
H-W30-C3.0 | 20.9 | 1.7 | 0.09 | 0.02 | 7.58 | 0.52 | 1.01 | 0.03 | 2.01 | 0.19 |
H-W35-C0.5 | 31.9 | 1.9 | 5.20 | 0.06 | 4.10 | 0.41 | 0.73 | 0.02 | 1.02 | 0.09 |
H-W35-C1.5 | 29.0 | 2.0 | 1.29 | 0.06 | 4.90 | 0.30 | 0.82 | 0.05 | 1.70 | 0.23 |
H-W35-C3.0 | 23.2 | 3.1 | 0.12 | 0.02 | 5.34 | 0.42 | 0.91 | 0.03 | 1.79 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Jeong, S.-T.; Bui, Q.-T.; Yang, I.-H. Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates. Materials 2022, 15, 7847. https://doi.org/10.3390/ma15217847
Park J-H, Jeong S-T, Bui Q-T, Yang I-H. Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates. Materials. 2022; 15(21):7847. https://doi.org/10.3390/ma15217847
Chicago/Turabian StylePark, Ji-Hun, Seung-Tae Jeong, Quang-The Bui, and In-Hwan Yang. 2022. "Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates" Materials 15, no. 21: 7847. https://doi.org/10.3390/ma15217847
APA StylePark, J. -H., Jeong, S. -T., Bui, Q. -T., & Yang, I. -H. (2022). Strength and Permeability Properties of Pervious Concrete Containing Coal Bottom Ash Aggregates. Materials, 15(21), 7847. https://doi.org/10.3390/ma15217847