Laminate Design of Carbon-Fiber-Reinforced Resin Matrix Composites for Optimized Mechanical Properties and Electrical Conductivity
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of Pantograph Slide Plates
2.3. Characterization
3. Results and Discussion
3.1. Effect of Copper Morphology on the Performance of the Sliding Plate
3.2. Influence of Size Effect of Copper Mesh on the Performance of the Sliding Plate
3.3. Determining the Contact Mode between the Sliding Plate and Bracket
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Wang, Z. Information-Based Construction of High-Speed Railway Tunnel. Shock Vib. 2017, 2017, 5318785. [Google Scholar] [CrossRef] [Green Version]
- Ai, B.; Molisch, A.F.; Rupp, M.; Zhong, Z.-D. 5G Key Technologies for Smart Railways. Proc. IEEE 2020, 108, 856–893. [Google Scholar] [CrossRef]
- Banerjee, A.V.; Duflo, E.; Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Li, Y.; Lin, J.-L. Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective. Transp. Res. Part A Policy Pract. 2018, 111, 96–107. [Google Scholar] [CrossRef]
- Boudoudouh, S.; Maaroufi, M. Renewable Energy Sources Integration and Control in Railway Microgrid. IEEE Trans. Ind. Appl. 2018, 55, 2045–2052. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, P.; Wei, W.; Gao, G.; Zhou, N.; Wu, G. Influence of the Crosswind on the Pantograph Arcing Dynamics. IEEE Trans. Plasma Sci. 2020, 48, 2822–2830. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Wang, M.; Liu, J.; Wang, C.; Zhong, H.; Jiang, Y. Microstructure and Current Carrying Wear Behaviors of Copper/Sintered–Carbon Composites for Pantograph Sliders. Met. Mater. Int. 2020, 27, 3398–3408. [Google Scholar] [CrossRef]
- Ma, S.; Xu, E.; Zhu, Z.; Liu, Q.; Yu, S.; Liu, J.; Zhong, H.; Jiang, Y. Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders. Powder Technol. 2018, 326, 54–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, S.; Song, C.; Yang, Z.; Shangguan, B. Tribological properties of pure carbon strip affected by dynamic contact force during current-carrying sliding. Tribol. Int. 2017, 123, 256–265. [Google Scholar] [CrossRef]
- Ding, T.; Chen, G.-X.; Li, Y.-M.; He, Q.-D.; Xuan, W.-J. Friction and Wear Behavior of Pantograph Strips Sliding Against Copper Contact Wire with Electric Current. AASRI Procedia 2012, 2, 288–292. [Google Scholar] [CrossRef]
- Bucca, G.; Collina, A. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear 2009, 266, 46–59. [Google Scholar] [CrossRef]
- Kim, J.-W.; Chae, H.-C.; Park, B.-S.; Lee, S.-Y.; Han, C.-S.; Jang, J.-H. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force. J. Sound Vib. 2007, 303, 405–427. [Google Scholar] [CrossRef]
- Ramesh, B.; Elsheikh, A.H.; Satishkumar, S.; Shaik, A.M.; Djuansjah, J.; Ahmadein, M.; Moustafa, E.B.; Alsaleh, N.A. The Influence of Boron Carbide on the Mechanical Properties and Bonding Strength of B4C/Nickel 63 Coatings of Brake Disc. Coatings 2022, 12, 663. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Elsayed, E.M.; El-Kady, O.A.; Alsaleh, N.A.; Elsheikh, A.H.; Essa, F.A.; Ahmadein, M.; Djuansjah, J. Electrochemical Behavior of Cu-MWCNT Nanocomposites Manufactured by Powder Technology. Coatings 2022, 12, 409. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, C.; Tang, D.-Y.; Shi, X.; Xue, Y.; Huang, Q.; Zhang, J.; Elsheikh, A.H.; Ibrahim, A.M.M. Tribological Performance of Gradient Ag-Multilayer Graphene/TC4 Alloy Self-Lubricating Composites Prepared By Laser Additive Manufacturing. Tribol. Trans. 2021, 64, 819–829. [Google Scholar] [CrossRef]
- Zhang, C.H.; Zhang, J.B.; Qu, M.C.; Zhang, J.N. Toughness properties of basalt/carbon fiber hybrid composites. In International Conference on Advances in Materials and Manufacturing Processes; Trans Tech Publications Ltd.: Shenzhen, China, 2010; pp. 732–735. [Google Scholar]
- Xing, L.; Feng, Z.; Bao, J.; Li, S. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development. Acta Mater. Compos. Sin. 2020, 37, 2700–2706. [Google Scholar]
- Kumar, N.K.; Kiran, B.C.; Rao, B.C.; Hussain, M.M. A Review on Carbon Reinforcements in Glass Fiber Polymer Matrix Composites. In Innovations in Mechanical Engineering: Select Proceedings of ICIME 2021; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 627–637. [Google Scholar] [CrossRef]
- Casalotti, A.; Lanzara, G.; Snyder, M.P. Towards highly reconfigurable carbon fiber composite. In Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2019), Louisville, KY, USA, 9–11 September 2019. [Google Scholar]
- Casalotti, A.; Chinnam, K.C.; Lanzara, G. Self-adaptable carbon fiber composite. In Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2018), San Antonio, TX, USA, 10–12 September 2018. [Google Scholar]
- Elsheikh, A. Bistable Morphing Composites for Energy-Harvesting Applications. Polymers 2022, 14, 1893. [Google Scholar] [CrossRef]
- Sandhanshiv, R.D.; Patel, D.M. Carbon Fibre Reinforced Composite Material: Review of Properties and Processing for various Metal Matrix Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 810, 12014. [Google Scholar] [CrossRef]
- Hiremath, N.; Mays, J.; Bhat, G. Recent Developments in Carbon Fibers and Carbon Nanotube-Based Fibers: A Review. Polym. Rev. 2017, 57, 339–368. [Google Scholar] [CrossRef]
- Liu, Y.D.; Kumar, S. Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers. Polym. Rev. 2012, 52, 234–258. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Jiang, H.; Tan, H.; Liu, D. Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption. Carbon 2022, 200, 94–107. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Su, S. Optimization of Process Conditions for Continuous Growth of CNTs on the Surface of Carbon Fibers. J. Compos. Sci. 2021, 5, 111. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.; Dong, C.; Fan, J.; Ren, Y. A closed-loop recycling process for carbon fiber reinforced vinyl ester resin composite. Chem. Eng. J. 2022, 446. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, G.; Xiao, C.; Li, H.; Song, Q.; Lu, J.; Fu, M. Control of multi-scale cracking for improvement of the reliability of carbon/carbon composites via design of interlaminar stress. Compos. Struct. 2022, 297, 115985. [Google Scholar] [CrossRef]
- Wen, K.; Ma, H.; Zhang, J.; Cheng, S.; Wang, X.; Hui, Y.; Li, X.; Xu, P.; Shao, J.; Chen, X. Electrostatic incitation on fiber surface for enhancing mechanical properties of fiber-reinforced composite. Compos. Sci. Technol. 2022, 228, 109627. [Google Scholar] [CrossRef]
- Zhou, W.; Yi, M.; Peng, K.; Ran, L.; Ge, Y. Preparation of a C/C–Cu composite with Mo2C coatings as a modification interlayer. Mater. Lett. 2015, 145, 264–268. [Google Scholar] [CrossRef]
- Cui, L.; Luo, R.; Wang, L.; Luo, H.; Deng, C. Novel copper-impregnated carbon strip for sliding contact materials. J. Alloys Compd. 2018, 735, 1846–1853. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Z.; Lei, C.; Meng, L.; Fang, Y.; Liu, J.; Wang, H. High strength and high conductivity Cu alloys: A review. Sci. China Technol. Sci. 2020, 63, 2505–2517. [Google Scholar] [CrossRef]
- Forintos, N.; Czigany, T. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers—A short review. Compos. Part B Eng. 2019, 162, 331–343. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, M.; Kumar, S.; Mohapatra, S.K. Properties of Glass-Fiber Hybrid Composites: A Review. Polym. Technol. Eng. 2016, 56, 455–469. [Google Scholar] [CrossRef]
- Pakdel, E.; Kashi, S.; Varley, R.; Wang, X. Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. Resour. Conserv. Recycl. 2020, 166, 105340. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, L.; Wang, X.; Wu, G. Modification of Renewable Cardanol onto Carbon Fiber for the Improved Interfacial Properties of Advanced Polymer Composites. Polymers 2019, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ren, B.; Wu, W.; Jiang, K.; Zhang, J.; Xu, E.; Liu, J.; Zhong, H.; Tong, G.; Jiang, Y. Copper fiber reinforced needle-coke/carbon composite for pantograph slide and its current-carrying wear performance. Mater. Res. Express 2022, 9, 55605. [Google Scholar] [CrossRef]
- van de Werken, N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Williams, A.; Tehrani, M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2019, 31, 100962. [Google Scholar] [CrossRef]
Performance | Value |
---|---|
Tensile strength/GPa | 3.964 |
Volume density/g·m−1 | 1.76 |
Linear density/g·m−1 | 0.2006 |
Resistivity/μΩ·m | 18.2 |
Elasticity modulus/GPa | 246.4 |
Elongation/% | 1.9 |
Number | Carbon Fiber (wt%) | Phenolic Resin (wt%) | Nitrile Rubber (wt%) | Flake Graphite (wt%) | Addition |
---|---|---|---|---|---|
Non−Cu | 21 | 39 | 11 | 29 | No additives |
Cu−P | 21 | 39 | 11 | 29 | 20 wt% Copper powder |
Cu−F | 21 | 39 | 11 | 29 | 20 wt% Copper fiber |
Cu−M | 21 | 39 | 11 | 29 | 20 wt% Copper mesh |
Model Number | Thickness/mm | Aperture/mm·mm | Unit Mass/×10−4 g·mm−2 |
---|---|---|---|
1# | 0.65 | 5.47 × 10.29 | 2.24 |
2# | 0.66 | 4.43 × 8.11 | 2.98 |
3# | 0.67 | 3.28 × 6.36 | 3.93 |
4# | 0.61 | 2.30 × 4.06 | 5.52 |
5# | 0.48 | 3.16 × 6.30 | 2.59 |
6# | 0.48 | 1.96 × 3.07 | 4.79 |
Sample | Number of Layers |
---|---|
S1 | 15 |
S2 | 11 |
S3 | 8 |
S4 | 6 |
S5 | 13 |
S6 | 7 |
Sample | Mass/g |
---|---|
T1 | 3.37 |
T2 | 4.58 |
T3 | 6.02 |
T4 | 8.14 |
T5 | 3.86 |
T6 | 7.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Wang, Y.; Wang, C.; Wang, C.; Li, M.; Jiang, H.; Xu, Z. Laminate Design of Carbon-Fiber-Reinforced Resin Matrix Composites for Optimized Mechanical Properties and Electrical Conductivity. Materials 2022, 15, 7876. https://doi.org/10.3390/ma15227876
Tan H, Wang Y, Wang C, Wang C, Li M, Jiang H, Xu Z. Laminate Design of Carbon-Fiber-Reinforced Resin Matrix Composites for Optimized Mechanical Properties and Electrical Conductivity. Materials. 2022; 15(22):7876. https://doi.org/10.3390/ma15227876
Chicago/Turabian StyleTan, Hongxue, Yanxiang Wang, Chengguo Wang, Chengjuan Wang, Mengfan Li, Haotian Jiang, and Zhenhao Xu. 2022. "Laminate Design of Carbon-Fiber-Reinforced Resin Matrix Composites for Optimized Mechanical Properties and Electrical Conductivity" Materials 15, no. 22: 7876. https://doi.org/10.3390/ma15227876
APA StyleTan, H., Wang, Y., Wang, C., Wang, C., Li, M., Jiang, H., & Xu, Z. (2022). Laminate Design of Carbon-Fiber-Reinforced Resin Matrix Composites for Optimized Mechanical Properties and Electrical Conductivity. Materials, 15(22), 7876. https://doi.org/10.3390/ma15227876