Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experiments
2.1. Preparation of Hyperbranched Gel
2.2. Fabrication of Si Electrode
2.3. Material Characterization
2.4. Peel Test
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of the Elastic Cross-Linked Binder
3.2. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, D.L.; Li, J.L.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 2015, 275, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ren, J.G.; Liu, R.; Yue, M.; Huang, Y.Y.; Yuan, G.H. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res. 2018, 42, 919–935. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Cheng, H.R.; Sun, Q.J.; Zhang, J.L.; Ming, J. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. Chem.-Eur. J. 2021, 27, 15842–15865. [Google Scholar] [CrossRef] [PubMed]
- Dkhar, D.S.; Kumari, R.; Malode, S.J.; Shetti, N.P.; Chandra, P. Integrated Lab-On-A-Chip Devices: Fabrication Methodologies, Transduction System for Sensing Purposes. J. Pharmaceut. Biomed. 2022, 223, 115120. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Malode, S.J.; Shetti, N.P.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Electrode Materials for Lithium-ion Batteries. Mater. Sci. Energy Technol. 2018, 1, 182–187. [Google Scholar] [CrossRef]
- Wu, H.; Chan, G.; Choi, J.W.; Ryu, I.; Yao, Y.; McDowell, M.T.; Lee, S.W.; Jackson, A.; Yang, Y.; Hu, L.B.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 309–314. [Google Scholar] [CrossRef]
- Liu, N.; Lu, Z.D.; Zhao, J.; McDowell, M.T.; Lee, H.W.; Zhao, W.T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.M.; Zhang, Y.C.; Song, Y.; Wang, G.K.; Liu, Y.X.; Wu, Z.G.; Zhong, B.H.; Zhong, Y.J.; Guo, X.D. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries. J. Power Sources 2021, 485, 229331. [Google Scholar] [CrossRef]
- Vogl, U.S.; Das, P.K.; Weber, A.Z.; Winter, M.; Kostecki, R.; Lux, S.F. Mechanism of Interactions between CMC Binder and Si Single Crystal Facets. Langmuir 2014, 30, 10299–10307. [Google Scholar] [CrossRef]
- Dirican, M.; Yanilmaz, M.; Fu, K.; Yildiz, O.; Kizil, H.; Hu, Y.; Zhang, X.W. Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. J. Electrochem. Soc. 2014, 161, A2197–A2203. [Google Scholar] [CrossRef]
- Chuang, Y.P.; Lin, Y.L.; Wang, C.C.; Hong, J.L. Dual Cross-Linked Polymer Networks Derived from the Hyperbranched Poly(ethyleneimine) and Poly(acrylic acid) as Efficient Binders for Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 1583–1592. [Google Scholar] [CrossRef]
- Porcher, W.; Chazelle, S.; Boulineau, A.; Mariage, N.; Alper, J.P.; van Rompaey, T.; Bridel, J.S.; Haon, C. Understanding Polyacrylic Acid and Lithium Polyacrylate Binder Behavior in Silicon Based Electrodes for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A3633–A3640. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T.H. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes. J. Power Sources 2017, 360, 585–592. [Google Scholar] [CrossRef]
- Shi, Z.X.; Jiang, S.S.; Robertson, L.A.; Zhao, Y.Y.; Sarnello, E.; Li, T.; Chen, W.; Zhang, Z.C.; Zhang, L. Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 57932–57940. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.; Wang, J.L.; Zhong, H.X.; Zhang, L.Z. N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries. J. Mater. Sci. 2018, 53, 9690–9700. [Google Scholar] [CrossRef]
- Li, C.; Shi, T.F.; Yoshitake, H.; Wang, H.Y. Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry. J. Mater. Chem. A 2016, 4, 16982–16991. [Google Scholar] [CrossRef]
- Yang, Y.J.; Wu, S.X.; Zhang, Y.P.; Liu, C.B.; Wei, X.J.; Luo, D.; Lin, Z. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, X.Y.; Huang, W.B.; Wang, Y.; Qu, Q.T.; Zheng, H.H. Dynamic bonded supramolecular binder enables high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 463, 228208. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Liu, L.M.; Zhao, J.W.; Wang, F. Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries. Electrochim. Acta 2019, 326, 134964. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Y.H.; Xun, M.M.; Zhang, J.; Huang, Z.; Zhou, X.D.; Yu, X.Q. Diol glycidyl ether-bridged low molecular weight PEI as potential gene delivery vehicles. J. Mater. Chem. B 2015, 3, 2660–2670. [Google Scholar] [CrossRef]
- Akhtar, N.; Shao, H.Y.; Ai, F.; Guan, Y.P.; Peng, Q.F.; Zhang, H.; Wang, W.K.; Wang, A.B.; Jiang, B.Y.; Huang, Y.Q. Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries. Electrochim. Acta 2018, 282, 758–766. [Google Scholar] [CrossRef]
- Preman, A.N.; Lee, H.; Yoo, J.; Kim, I.; Saito, T.; Ahn, S.K. Progress of 3D network binders in silicon anodes for lithium ion batteries. J. Mater. Chem. A 2020, 8, 25548–25570. [Google Scholar] [CrossRef]
- Woo, H.; Park, K.; Kim, J.; Yun, A.J.; Nam, S.; Park, B. 3D Meshlike Polyacrylamide Hydrogel as a Novel Binder System via in situ Polymerization for High-Performance Si-Based Electrode. Adv. Mater. Interfaces 2020, 7, 1901475. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.F.; Chu, Q.L.; Yan, C.; Zhang, S.Q.; Lin, Z.; Lu, J. Interweaving 3D Network Binder for High-Areal-Capacity Si Anode through Combined Hard and Soft Polymers. Adv. Energy Mater. 2019, 9, 1802645. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Kwon, T.W.; Lee, I.; Kim, T.S.; Coskun, A.; Choi, J.W. Hyperbranched beta-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano Lett. 2014, 14, 864–870. [Google Scholar] [CrossRef]
- Laudenslager, M.J.; Schiffman, J.D.; Schauer, C.L. Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. Biomacromolecules 2008, 9, 2682–2685. [Google Scholar] [CrossRef]
- Yoon, J.; Oh, D.X.; Jo, C.; Lee, J.; Hwang, D.S. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 2014, 16, 25628–25635. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ling, M.; Feng, J.; Liu, G.; Guo, J.H. Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 2017, 40, 559–565. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Zhang, T.; Li, J.T.; Huang, L.; Sun, S.G. A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 3599–3605. [Google Scholar] [CrossRef]
- He, J.R.; Zhang, L.Z. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J. Alloys Compd. 2018, 763, 228–240. [Google Scholar] [CrossRef]
- An, W.L.; Gao, B.A.; Mei, S.X.; Xiang, B.; Fu, J.J.; Wang, L.; Zhang, Q.B.; Chu, P.K.; Huo, K.F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, N.; Xu, J.; Yao, Y.X.; Wegner, G.; Fang, X.; Chen, C.H.; Lieberwirth, I. Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion. 2009, 180, 222–225. [Google Scholar] [CrossRef]
- Zhuang, Z.Z.; Wu, L.L.; Ma, X.F.; Diao, W.J.; Fang, Y. High-strength, tough, rapidly self-recoverable, and fatigue-resistant hydrogels based on multi-network and multi-bond toughening mechanism. J. Appl. Polym. Sci. 2018, 135, 46847. [Google Scholar] [CrossRef]
- Sun, J.C.; Ren, X.; Li, Z.F.; Tian, W.C.; Zheng, Y.; Wang, L.; Liang, G.C. Effect of poly (acrylic acid)/Poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. J. Alloys Compd. 2019, 783, 379–386. [Google Scholar] [CrossRef]
Samples | RSEI (Ω) | Rct (Ω) | δ (s−1/2) | DLi (cm2 s−1) |
---|---|---|---|---|
HPEI-CPEG-pH6 3rd | 218 | 229 | 144 | 7.62 × 10−17 |
HPEI-CPEG-pH7 3rd | 65 | 101 | 37.6 | 1.15 × 10−15 |
HPEI-CPEG-pH8 3rd | 923 | 841 | 2176 | 3.33 × 10−19 |
HPEI-CPEG-pH10 3rd | 945 | 830 | 2052 | 3.75 × 10−19 |
HPEI-CPEG-pH6 200rd | 1794 | 1812 | 1950 | 4.17 × 10−19 |
HPEI-CPEG-pH7 200rd | 206 | 185 | 1069 | 1.39 × 10−18 |
HPEI-CPEG-pH8 200rd | 1582 | 1639 | 2349 | 2.87 × 10−19 |
HPEI-CPEG-pH10 200rd | 1580 | 1698 | 6140 | 4.21 × 10−20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Jiang, Y.; Cheng, N.; Zhao, J.; Chen, F. Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries. Materials 2022, 15, 7921. https://doi.org/10.3390/ma15227921
Yang C, Jiang Y, Cheng N, Zhao J, Chen F. Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries. Materials. 2022; 15(22):7921. https://doi.org/10.3390/ma15227921
Chicago/Turabian StyleYang, Chenchen, Yan Jiang, Na Cheng, Jianwei Zhao, and Feng Chen. 2022. "Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries" Materials 15, no. 22: 7921. https://doi.org/10.3390/ma15227921
APA StyleYang, C., Jiang, Y., Cheng, N., Zhao, J., & Chen, F. (2022). Hyperbranched Polymer Network Based on Electrostatic Interaction for Anodes in Lithium-Ion Batteries. Materials, 15(22), 7921. https://doi.org/10.3390/ma15227921