Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review
Abstract
:1. Introduction
2. The Nucleation and Growth Behavior of Mg Crystallites during Hydrogen Desorption of MgH2
3. The Nucleation and Growth Mechanism of MgH2 Crystallites during Hydrogenation of Mg
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, T.Y.; Lim, K.L.; Tseng, Y.S.; Chan, S.L.I. A review on the characterization of hydrogen in hydrogen storage materials. Renew. Sustain. Energy Rev. 2017, 79, 1122–1133. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Zhang, J.G.; Zhu, Y.F.; Yao, L.L.; Xu, C.; Liu, Y.N.; Li, L.Q. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. J. Alloys Compd. 2019, 782, 796–823. [Google Scholar] [CrossRef]
- Xie, X.B.; Chen, M.; Hu, M.M.; Wang, B.L.; Yu, R.H.; Liu, T. Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. Int. J. Hydrogen Energy 2019, 44, 10694–10712. [Google Scholar] [CrossRef]
- Kudiiarov, V.; Lyu, J.; Semyonov, O.; Lider, A.; Chaemchuen, S.; Verpoort, F. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage. Appl. Mater. Today 2021, 25, 101208. [Google Scholar] [CrossRef]
- Lyu, J.; Kudiiarov, V.; Lider, A. An Overview of the Recent Progress in Modifications of Carbon Nanotubes for Hydrogen Adsorption. Nanomaterials 2020, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- La, M.; Chen, C.; Cheng, H. Effects of Sc on The Hydrogenation/dehydrogenation Kinetics of Mg-based Hydrogen Storage Material. Chin. Rare Earths 2016, 37, 90–95. (In Chinese) [Google Scholar] [CrossRef]
- Wu, X.; Xue, H.; Peng, Y.; Deng, J.; Xie, Z.; Zheng, J.; Li, X.; Li, S. Hydrogen Generation by Hydrolysis of MgH2-LiH Composite. Materials 2022, 15, 1593. [Google Scholar] [CrossRef]
- Shin, H.-W.; Hwang, J.-H.; Kim, E.-A.; Hong, T.-W. Evaluation of Hydrogenation Kinetics and Life Cycle Assessment on Mg2NiHx–CaO Composites. Materials 2021, 14, 2848. [Google Scholar] [CrossRef]
- Sun, Y.H.; Shen, C.Q.; Lai, Q.W.; Liu, W.; Wang, D.W.; Aguey-Zinsou, K.F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Kim, H.T.; Jung, S.; Roh, S.H.; Park, J.H.; Jung, H.Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sustain. Energy Rev. 2017, 72, 523–534. [Google Scholar] [CrossRef]
- Ozerova, A.M.; Skobelkina, A.A.; Simagina, V.I.; Komova, O.V.; Prosvirin, I.P.; Bulavchenko, O.A.; Lipatnikova, I.L.; Netskina, O.V. Magnetically Recovered Co and Co@Pt Catalysts Prepared by Galvanic Replacement on Aluminum Powder for Hydrolysis of Sodium Borohydride. Materials 2022, 15, 3010. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Elman, R.R.; Svyatkin, L.A.; Kudiiarov, V.N. Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System. Materials 2022, 15, 1667. [Google Scholar] [CrossRef] [PubMed]
- Grigorova, E.; Tzvetkov, P.; Todorova, S.; Markov, P.; Spassov, T. Facilitated Synthesis of Mg2Ni Based Composites with Attractive Hydrogen Sorption Properties. Materials 2021, 14, 1936. [Google Scholar] [CrossRef] [PubMed]
- Komova, O.V.; Simagina, V.I.; Pochtar, A.A.; Bulavchenko, O.A.; Ishchenko, A.V.; Odegova, G.V.; Gorlova, A.M.; Ozerova, A.M.; Lipatnikova, I.L.; Tayban, E.S.; et al. Catalytic Behavior of Iron-Containing Cubic Spinel in the Hydrolysis and Hydrothermolysis of Ammonia Borane. Materials 2021, 14, 5422. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Tena García, J.R. Metal Borohydrides beyond Groups I and II: A Review. Materials 2021, 14, 2561. [Google Scholar] [CrossRef]
- Netskina, O.V.; Tayban, E.S.; Rogov, V.A.; Ozerova, A.M.; Mukha, S.A.; Simagina, V.I.; Komova, O.V. Solid-state NaBH4 composites for hydrogen generation: Catalytic activity of nickel and cobalt catalysts. Int. J. Hydrogen Energy 2021, 46, 5459–5471. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, T.; He, W.; Luo, Q.; Li, Z.; Zhang, W.; He, J.; Li, Q. Electron microscope investigation on hydrogen storage materials: A review. Int. J. Hydrogen Energy 2020, 45, 12048–12070. [Google Scholar] [CrossRef]
- Yao, J.; Wu, Z.; Wang, H.; Yang, F.; Ren, J.; Zhang, Z. Application-oriented hydrolysis reaction system of solid-state hydrogen storage materials for high energy density target: A review. J. Energy Chem. 2022, 74, 218–238. [Google Scholar] [CrossRef]
- Khafidz, N.Z.A.K.; Yaakob, Z.; Lim, K.L.; Timmiati, S.N. The kinetics of lightweight solid-state hydrogen storage materials: A review. Int. J. Hydrogen Energy 2016, 41, 13131–13151. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Li, L.; Huang, Y.; An, C.; Wang, Y. Lightweight hydrides nanocomposites for hydrogen storage: Challenges, progress and prospects. Sci. China Mater. 2019, 62, 1597–1625. [Google Scholar] [CrossRef] [Green Version]
- Abdellaoui, M.; Lakhal, M.; Bhihi, M.; El Khatabi, M.; Benyoussef, A.; El Kenz, A.; Loulidi, M. First principle study of hydrogen storage in doubly substituted Mg based hydrides Mg5MH12 (M = B, Li) and Mg4BLiH12. Int. J. Hydrogen Energy 2016, 41, 20908–20913. [Google Scholar] [CrossRef]
- Crivello, J.C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of magnesium hydride-based materials: Development and optimisation. Appl. Phys. Mater. Sci. Process. 2016, 122, 97. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Wang, Z.; Yao, P.; Xia, C.; Yang, T.; Li, Q. Hydrogen storage behaviors of magnesium hydride catalyzed by transition metal carbides. Int. J. Hydrogen Energy 2021, 46, 40203–40216. [Google Scholar] [CrossRef]
- Jinzhe, L.; Lider, A.M.; Kudiiarov, V.N. An overview of progress in Mg-based hydrogen storage films. Chin. Phys. B 2019, 28, 098801. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Wu, F.; Sun, Z.; Zheng, J.; Zhang, L.; Chen, L. Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage. Trans. Nonferrous Met. Soc. China 2021, 31, 3469–3477. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, N.; Li, T.; Zhang, Q.; Zhou, S. Hydrogen desorption kinetics of magnesium hydride. J. Funct. Mater. 2015, 46, 9041–9044. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, J.; Ren, L.; Ma, Z.; Zhu, W.; Ding, W. Research development of core-shell nanostructured Mg-based hydrogen storage composite materials. Mater. Sci. Technol. 2020, 28, 58–67. (In Chinese) [Google Scholar] [CrossRef]
- Dai, M.; Lei, G.; Zhang, Z.; Li, Z.; Cao, H.; Chen, P. Room Temperature Hydrogen Absorption of V2O5 Catalyzed MgH2/Mg. Acta Chim. Sin. 2022, 80, 303–309. (In Chinese) [Google Scholar] [CrossRef]
- Ding, X.; Chen, R.; Chen, X.; Cao, W.; Ding, H.; Su, Y.; Guo, J. De-/hydrogenation mechanism of Mg-based hydrogen storage alloys and their microstructure and property control. Chin. J. Nat. 2020, 42, 179–186. (In Chinese) [Google Scholar] [CrossRef]
- Si, T.-Z.; Zhang, X.-Y.; Feng, J.-J.; Ding, X.-L.; Li, Y.-T. Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts. Rare Met. 2021, 40, 995–1002. [Google Scholar] [CrossRef]
- Dębski, A.; Terlicka, S.; Sypien, A.; Gąsior, W.; Pęska, M.; Polański, M. Hydrogen Sorption Behavior of Cast Ag-Mg Alloys. Materials 2022, 15, 270. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Jiang, J.H.; Ma, A.B.; Li, Y.H.; Song, D. A Critical Review of Mg-Based Hydrogen Storage Materials Processed by Equal Channel Angular Pressing. Metals 2017, 7, 324. [Google Scholar] [CrossRef] [Green Version]
- Han, D.J.; Bang, K.R.; Cho, H.; Cho, E.S. Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride. Korean J. Chem. Eng. 2020, 37, 1306–1316. [Google Scholar] [CrossRef]
- Li, J.Z.; Zhou, C.S.; Fang, Z.G.Z.; Bowman, R.C.; Lu, J.; Ren, C. Isothermal hydrogenation kinetics of ball-milled nano-catalyzed magnesium hydride. Materialia 2019, 5, 100227. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Y.; Luo, Q.; Yang, X.; Yang, Y.; Tan, J.; Dong, Z.; Dang, J.; Li, J.; Chen, Y.; et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys 2021, 9, 1922–1941. [Google Scholar] [CrossRef]
- Shang, Y.; Pistidda, C.; Gizer, G.; Klassen, T.; Dornheim, M. Mg-based materials for hydrogen storage. J. Magnes. Alloys 2021, 9, 1837–1860. [Google Scholar] [CrossRef]
- San-Martin, A.; Manchester, F.D. The H−Mg (Hydrogen-Magnesium) system. J. Phase Equilib. 1987, 8, 431–437. [Google Scholar] [CrossRef]
- Klyukin, K.; Shelyapina, M.G.; Fruchart, D. Hydrogen induced phase transition in magnesium: An Ab initio study. J. Alloys Compd. 2013, 580, S10–S12. [Google Scholar] [CrossRef]
- Klyukin, K.; Shelyapina, M.G.; Fruchart, D. DFT calculations of hydrogen diffusion and phase transformations in magnesium. J. Alloys Compd. 2015, 644, 371–377. [Google Scholar] [CrossRef]
- Shelyapina, M.G. Hydrogen Diffusion on, into and in Magnesium Probed by DFT: A Review. Hydrogen 2022, 3, 285–302. [Google Scholar] [CrossRef]
- Lai, Q.W.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E.; Thornton, A.W.; Hill, M.R.; Gu, Q.F.; Mao, J.F.; Huang, Z.G.; Liu, H.K.; et al. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. Chemsuschem 2015, 8, 2789–2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Zhang, L.; Yan, N.; Zheng, J.; Bian, T.; Yang, Z.; Su, S. Realizing Hydrogen De/Absorption Under Low Temperature for MgH2 by Doping Mn-Based Catalysts. Nanomaterials 2020, 10, 1745. [Google Scholar] [CrossRef]
- Stepura, G.; Rosenband, V.; Gany, A. A model for the decomposition of titanium hydride and magnesium hydride. J. Alloys Compd. 2012, 513, 159–164. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Hu, C.D.; Li, Y.T.; Zhang, Q.G. Crystallite growth characteristics of Mg during hydrogen desorption of MgH2. Prog. Nat. Sci.-Mater. Int. 2020, 30, 246–250. [Google Scholar] [CrossRef]
- Shriniwasan, S.; Tien, H.-Y.; Tanniru, M.; Ebrahimi, F.; Tatiparti, S.S.V. Transition from interfacial to diffusional growth during hydrogenation of Mg. Mater. Lett. 2015, 161, 271–274. [Google Scholar] [CrossRef]
- Adams, M.; Grant, D.M.; Stuart, A.; Walker, G.S. Modelling a kinetic deviation of the magnesium hydrogenation reaction at conditions close to equilibrium. Int. J. Hydrogen Energy 2019, 44, 29123–29131. [Google Scholar] [CrossRef]
- Perejón, A.; Sánchez-Jiménez, P.E.; Criado, J.M.; Pérez-Maqueda, L.A. Magnesium hydride for energy storage applications: The kinetics of dehydrogenation under different working conditions. J. Alloys Compd. 2016, 681, 571–579. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Tanabe, K. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step. Chem. Phys. Lett. 2018, 699, 132–138. [Google Scholar] [CrossRef]
- Li, Q.; Lin, X.; Luo, Q.; Chen, Y.a.; Wang, J.; Jiang, B.; Pan, F. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner., Metall. Mater. 2022, 29, 32–48. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, T.; Shi, L.; Chen, Y.; Song, L. Mechanisms of hydrides’ nucleation and the effect of hydrogen pressure induced driving force on de-/hydrogenation kinetics of Mg-based nanocrystalline alloys. Int. J. Hydrogen Energy 2022, 47, 1063–1075. [Google Scholar] [CrossRef]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; von Colbe, J.M.B.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Botta, W.J.; Zepon, G.; Ishikawa, T.T.; Leiva, D.R. Metallurgical processing of Mg alloys and MgH2 for hydrogen storage. J. Alloys Compd. 2022, 897, 162798. [Google Scholar] [CrossRef]
- Nogita, K.; Tran, X.Q.; Yamamoto, T.; Tanaka, E.; McDonald, S.D.; Gourlay, C.M.; Yasuda, K.; Matsumura, S. Evidence of the hydrogen release mechanism in bulk MgH2. Sci. Rep. 2015, 5, 8450. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.P.; Li, Q. A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrogen Energy 2016, 41, 18072–18087. [Google Scholar] [CrossRef]
- Evard, E.; Gabis, I.; Yartys, V.A. Kinetics of hydrogen evolution from MgH2: Experimental studies, mechanism and modelling. Int. J. Hydrogen Energy 2010, 35, 9060–9069. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J. Alloys Compd. 1999, 291, 295–299. [Google Scholar] [CrossRef]
- Gabis, I.E.; Chernov, I.A.; Voyt, A.P. Decomposition kinetics of metal hydrides: Experiments and modeling. J. Alloys Compd. 2013, 580, S243–S246. [Google Scholar] [CrossRef]
- El Khatabi, M.; Naji, S.; Bhihi, M.; Benyoussef, A.; El Kenz, A.; Loulidi, M. Effects of double substitution on MgH2 hydrogen storage properties: An Ab initio study. J. Alloys Compd. 2018, 743, 666–671. [Google Scholar] [CrossRef]
- Maark, T.A.; Hussain, T.; Ahuja, R. Structural, electronic and thermodynamic properties of Al- and Si-doped alpha-, gamma-, and beta-MgH2: Density functional and hybrid density functional calculations. Int. J. Hydrogen Energy 2012, 37, 9112–9122. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvag, H. Pressure-induced structural transitions in MgH2. Phys. Rev. Lett. 2002, 89, 4175506. [Google Scholar] [CrossRef] [Green Version]
- Vittori Antisari, M.; Aurora, A.; Mirabile Gattia, D.; Montone, A. On the nucleation step in the Mg–MgH2 phase transformation. Scr. Mater. 2009, 61, 1064–1067. [Google Scholar] [CrossRef]
- Cermak, J.; Kral, L. Hydrogen diffusion in Mg-H and Mg-Ni-H alloys. Acta Mater. 2008, 56, 2677–2686. [Google Scholar] [CrossRef]
- Antisari, M.V.; Montone, A.; Aurora, A.; Mancini, M.R.; Gattia, D.M.; Pilloni, L. Scanning electron microscopy of partially de-hydrogenated MgH2 powders. Intermetallics 2009, 17, 596–602. [Google Scholar] [CrossRef]
- Tanniru, M.; Tien, H.Y.; Ebrahimi, F. Study of the dehydrogenation behavior of magnesium hydride. Scr. Mater. 2010, 63, 58–60. [Google Scholar] [CrossRef]
- Xie, L.; Li, J.; Zhang, T.; Kou, H. Understanding the dehydrogenation process of MgH2 from the recombination of hydrogen atoms. Int. J. Hydrogen Energy 2016, 41, 5716–5724. [Google Scholar] [CrossRef]
- Friedlmeier, G.; Groll, M. Experimental analysis and modelling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloys Compd. 1997, 253, 550–555. [Google Scholar] [CrossRef]
- Deyu, G.; Zhang, J.; Liu, Y.; Zhang, Y.; Zhu, Y.; Li, L. Purity of MgH2 Improved by the Process of Pre-milling Assisted Hydriding of Mg Powder under a Hydrogen Pressure of 0.5 MPa. Russ. J. Phys. Chem. A 2019, 93, 665–673. [Google Scholar] [CrossRef]
- Hong, S.-H.; Song, M.Y. Preparation of an additive-free sample with a MgH2 phase by planetary ball milling of Mg with10 wt% MgH2. Met. Mater. Int. 2016, 22, 1121–1128. [Google Scholar] [CrossRef]
- Zhou, C.; Li, K.; Huang, T.; Sun, P.; Wang, L.; Lu, Y.; Fang, Z.Z. In situ formation of nanocrystalline MgH2 through room temperature hydrogenation. Mater. Des. 2022, 218, 110729. [Google Scholar] [CrossRef]
- Ouyang, L.Z.; Liu, F.; Wang, H.; Liu, J.W.; Yang, X.S.; Sun, L.X.; Zhu, M. Magnesium -based hydrogen storage compounds: A review. J. Alloys Compd. 2020, 832, 154865. [Google Scholar] [CrossRef]
- Matsumoto, I.; Asano, K.; Sakaki, K.; Nakamura, Y. Hydrogen absorption kinetics of magnesium fiber prepared by vapor deposition. Int. J. Hydrogen Energy 2011, 36, 14488–14495. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yu, L.P.; Zhou, X.J.; Zhou, T.; Peng, P. Enhanced hydrogen storage properties and mechanisms of magnesium hydride modified by transition metal dissolved magnesium oxides. Int. J. Hydrogen Energy 2018, 43, 21864–21873. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, V.; Cassidy, C.; Pursell, C.; Nivargi, C.; Clemens, B.; Sowwan, M. Hydrogenation of Mg nanofilms catalyzed by size-selected Pd nanoparticles: Observation of localized MgH2 nanodomains. J. Catal. 2016, 337, 14–25. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Kumar, M.; Chandra, R. Hydrogen absorption and desorption properties of Pd/Mg/Pd tri-layers prepared by magnetron sputtering. Surf. Coat. Technol. 2013, 237, 450–455. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Jiang, R.; Zhou, S. Effect of Lanthanum on Kinetic and Thermodynamic Properties of Magnesium for Hydrogen Absorption and Desorption. Rare Met. Mater. Eng. 2019, 48, 2239–2243. (In Chinese) [Google Scholar]
- Mooij, L.; Dam, B. Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics. Phys. Chem. Chem. Phys. 2013, 15, 11501–11510. [Google Scholar] [CrossRef]
- Mooij, L.; Dam, B. Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys. Chem. Chem. Phys. 2013, 15, 2782–2792. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Sun, P.; Guo, X.; Zhou, C.; Fang, Z.Z. The effects of crystalline defects on hydrogen absorption kinetics of catalyzed MgH2 at ambient conditions. J. Alloys Compd. 2022, 927, 167090. [Google Scholar] [CrossRef]
- Wang, C.S.; Wang, X.H.; Lei, Y.Q.; Chen, C.P.; Wang, Q.D. The hydriding kinetics of MlNi5—I. Development of the model. Int. J. Hydrogen Energy 1996, 21, 471–478. [Google Scholar] [CrossRef]
- Tien, H.-Y.; Tanniru, M.; Wu, C.-Y.; Ebrahimi, F. Effect of hydride nucleation rate on the hydrogen capacity of Mg. Int. J. Hydrogen Energy 2009, 34, 6343–6349. [Google Scholar] [CrossRef]
- Vigeholm, B.; Jensen, K.; Larsen, B.; Pedersen, A.S. Elements of hydride formation mechanisms in nearly spherical magnesium powder particles. J. Less-Common Met. 1987, 131, 133–141. [Google Scholar] [CrossRef]
- Vigeholm, B.; Kjoller, J.; Larsen, B.; Pedersen, A.S. Formation and decomposition of magnesium hydride. J. Less-Common Met. 1983, 89, 135–144. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 2010, 3, 526–543. [Google Scholar] [CrossRef]
- Zhang, L.C.; Wang, K.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156. [Google Scholar] [CrossRef]
- Webb, C.J. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 2015, 84, 96–106. [Google Scholar] [CrossRef]
- Baran, A.; Polanski, M. Magnesium-Based Materials for Hydrogen Storage-A Scope Review. Materials 2020, 13, 3993. [Google Scholar] [CrossRef]
- Yeboah, M.L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shen, Z.Y.; Jian, N.; Hu, J.J.; Du, F.; Yao, J.H.; Gao, M.X.; Liu, Y.F.; Pan, H.G. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2018, 43, 23327–23335. [Google Scholar] [CrossRef]
- Rizo-Acosta, P.; Cuevas, F.; Latroche, M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A 2019, 7, 23064–23075. [Google Scholar] [CrossRef]
- Friedrichs, O.; Sanchez-Lopez, J.C.; Lopez-Cartes, C.; Dornheim, M.; Klassen, T.; Bormann, R.; Fernandez, A. Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Appl. Surf. Sci. 2006, 252, 2334–2345. [Google Scholar] [CrossRef]
- Thangarasu, S.; Oh, T.H. Impact of Polymers on Magnesium-Based Hydrogen Storage Systems. Polymers 2022, 14, 2608. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Lu, Y.; Ouyang, L.; Wang, H. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review. Materials 2013, 6, 4654–4674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, K.J.; Moon, H.R.; Ruminski, A.M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J.J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10, 286–290. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Bowman, R.C.; Fang, Z.Z.; Liu, Y.; Zhou, C.S. Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride. J. Power Sources 2020, 454, 227936. [Google Scholar] [CrossRef]
- Ostenfeld, C.W.; Chorkendorff, I. Effect of oxygen on the hydrogenation properties of magnesium films. Surf. Sci. 2006, 600, 1363–1368. [Google Scholar] [CrossRef]
- Mojica-Sanchez, J.P.; Zarate-Lopez, T.I.; Flores-Alvarez, J.M.; Reyes-Gomez, J.; Pineda-Urbina, K.; Gomez-Sandoval, Z. Magnesium oxide clusters as promising candidates for hydrogen storage. Phys. Chem. Chem. Phys. 2019, 21, 23102–23110. [Google Scholar] [CrossRef]
- Han, Z.Y.; Yeboah, M.L.; Jiang, R.Q.; Li, X.Y.; Zhou, S.X. Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation. Appl. Surf. Sci. 2020, 504, 144491. [Google Scholar] [CrossRef]
- Uchida, H.T.; Kirchheim, R.; Pundt, A. Influence of hydrogen loading conditions on the blocking effect of nanocrystalline Mg films. Scr. Mater. 2011, 64, 935–937. [Google Scholar] [CrossRef]
- Spatz, P.; Aebischer, H.A.; Krozer, A.; Schlapbach, L. The diffusion of H in Mg and the nucleation and growth of MgH2 in thin-films. Z. Phys. Chem. 1993, 181, 393–397. [Google Scholar] [CrossRef]
- Hao, S.Q.; Sholl, D.S. Hydrogen diffusion in MgH2 and NaMgH3 via concerted motions of charged defects. Appl. Phys. Lett. 2008, 93, 251901. [Google Scholar] [CrossRef]
- Fursikov, P.V.; Tarasov, B.P. Hydrogen sorbing magnesium alloys and composites. Russ. Chem. Bull. 2018, 67, 193–199. [Google Scholar] [CrossRef]
- Vermeulen, P.; Ledovskikh, A.; Danilov, D.; Notten, P.H.L. Thermodynamics and kinetics of the thin film magnesium–hydrogen system. Acta Mater. 2009, 57, 4967–4973. [Google Scholar] [CrossRef]
- Ismail, M.; Yahya, M.S.; Sazelee, N.A.; Ali, N.A.; Yap, F.H.; Mustafa, N.S. The effect of K2SiF6 on the MgH2 hydrogen storage properties. J. Magnes. Alloy 2020, 8, 832–840. [Google Scholar] [CrossRef]
- Ismail, M.; Sinin, A.M.; Sheng, C.K.; Nik, W.W. Desorption behaviours of lithium alanate with metal oxide nanopowder additives. Int. J. Electrochem. Sci. 2014, 9, 4959–4973. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, J.; Kudiiarov, V.; Lider, A. Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review. Materials 2022, 15, 8004. https://doi.org/10.3390/ma15228004
Lyu J, Kudiiarov V, Lider A. Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review. Materials. 2022; 15(22):8004. https://doi.org/10.3390/ma15228004
Chicago/Turabian StyleLyu, Jinzhe, Viktor Kudiiarov, and Andrey Lider. 2022. "Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review" Materials 15, no. 22: 8004. https://doi.org/10.3390/ma15228004
APA StyleLyu, J., Kudiiarov, V., & Lider, A. (2022). Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review. Materials, 15(22), 8004. https://doi.org/10.3390/ma15228004