Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4
Abstract
:1. Introduction
2. Experimental and Theoretical Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Krishna, T.; Zeb, K.; Rajangam, V.; Gopi, C.V.V.M.; Sambasivam, S.; Raghavendra, K.V.G.; Obaidat, I.M. A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics 2020, 9, 1161. [Google Scholar] [CrossRef]
- Chen, J. Recent Progress in Advanced Materials for Lithium Ion Batteries. Materials 2013, 6, 156–183. [Google Scholar] [CrossRef]
- Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J.-B. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4, 269–284. [Google Scholar] [CrossRef]
- Marx, N.; Croguennec, L.; Carlier, D.; Wattiaux, A.; Cras, F.L.; Suard, E.; Delmas, C. The structure of tavorite LiFePO4(OH) from diffraction and GGA + U studies and its preliminary electrochemical characterization. Dalton Trans. 2010, 39, 5108. [Google Scholar] [CrossRef]
- Nanjundaswamy, K.S.; Padhi, A.K.; Goodenough, J.B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion. 1996, 92, 1–10. [Google Scholar] [CrossRef]
- Masquelier, C.; Padhi, A.; Nanjundaswamy, K.; Goodenough, J.B. New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3(X = P, As). J. Solid State Chem. 1998, 135, 228–234. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Moore, P.B. Crystal chemistry of the basic iron phosphate. Am. Mineral. 1970, 55, 135–169. [Google Scholar]
- Mille, J.M.M. FePO Catalysts for the Selective Oxidative Dehydrogenation of Isobutyric Acid into Methacrylic Acid. Catal. Rev. Sci. Eng. 1998, 40, 1–38. [Google Scholar] [CrossRef]
- Millet, J.M.M.; Rouzies, D.; Vedrine, J.C. Isobutyric acid oxidative dehydrogenation over iron hydroxyphosphates. II. Tentative description of the catalytic sites based on Mossbauer spectroscopic study. Appl. Catal. A Gen. 1995, 124, 205–219. [Google Scholar] [CrossRef]
- Mahmoud, A.; Caes, S.; Brisbois, M.; Hermann, R.P.; Berardo, L.; Schrijnemakers, A.; Malherbe, C.; Eppe, G.; Cloots, R.; Vertruyen, B.; et al. Spray-drying as a Tool to Disperse Conductive Carbon Inside Na2FePO4F Particles by Addition of Carbon Black or Carbon Nanotubes to the Precursor Solution. J. Solid State Electrochem. 2018, 22, 103–112. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Ge, X.; Li, S.; Wang, X.; Wang, S.; Zhang, L.; Zhang, Z. Iron-Phosphate-Based Cathode Materials for Cost-Effective Sodium-Ion Batteries: Development, Challenges, and Prospects. Adv. Mater. Interfaces 2022, 9, 2200515. [Google Scholar] [CrossRef]
- Hadouchi, M.; Koketsu, T.; Hu, Z.; Ma, J. The origin of fast-charging lithium iron phosphate for batteries. Battery Energy 2022, 1, 20210010. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Rosado, R.; del Campillo, M.C.; Martínez, M.A.; Barrón, V.; Torrent, J. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant Soil 2002, 241, 139–144. [Google Scholar] [CrossRef]
- Scott, D.A.; Eggert, G. The vicissitudes of vivianite as pigment and corrosion product. Stud. Conserv. 2007, 52 (Suppl. 1), 3–13. [Google Scholar] [CrossRef]
- Redhammer, G.J.; Tippelt, G.; Roth, G.; Lottermoser, W.; Amthauer, G. Structure and Mossbauer spectroscopy of barbosalite Fe2+Fe3+2(PO4)2(OH)2 between 80 K and 300 K. Phys. Chem. Miner. 2000, 27, 419–429. [Google Scholar] [CrossRef]
- Sandineni, P.; Ghosh, K.; Choudhury, A. Electrochemistry of illusive barbosalite, Fe2+Fe3+2(PO4)2(OH)2: An iron phosphate related to lipscombite structure. J. Electrochem. Soc. 2019, 166, A3585–A3592. [Google Scholar] [CrossRef]
- Frost, R.L.; Xi, Y.; López, A.; Scholz, R.; de Carvalho Lana, C.; e Souza, B.F. Vibrational spectroscopic characterization of the phosphate mineral barbosalite Fe2+Fe23+(PO4)2(OH)2—Implications for the molecular structure. J. Mol. Struct. 2013, 1051, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Poienar, M.; Damay, F.; Rouquette, J.; Ranieri, V.; Malo, S.; Maignan, A.; Elkaïm, E.; Haines, J.; Martin, C. Structural and magnetic characterization of barbosalite Fe3(PO4)2(OH)2. J. Solid State Chem. 2020, 287, 121357. [Google Scholar] [CrossRef]
- Poienar, M.; Taranu, B.O.; Svera, P.; Sfirloaga, P.; Vlazan, P. Disclosing the thermal behaviour, electrochemical and optical properties of synthetic Fe3(PO4)2(OH)2 materials. J. Therm. Anal. Calorim. 2022, 147, 11839–11855. [Google Scholar] [CrossRef]
- Gheith, M.A. Lipscombite: A new synthetic ‘iron lazulite’. Am. Mineral. 1953, 38, 612–628. [Google Scholar]
- Dollé, M.; Patoux, S.; Richardson, T.J. Lithium insertion chemistry of phosphate phases with the lipscombite structure. J. Power Source 2005, 144, 208–213. [Google Scholar] [CrossRef]
- Poienar, M.; Sfirloaga, P.; Vlazan, P. Investigation of thermal and magnetic behaviour of mixed valence iron hydroxyphosphate from Fe3(PO4)2(OH)2 lipscombite systems. Ceram. Int. 2019, 45, 16540–16544. [Google Scholar] [CrossRef]
- Vencato, I.; Mascarenhas, Y.P.; Mattievich, E. The crystal structure of FeFe2(PO3OH)4(H2O)4: A new synthetic compound of mineralogic interest. Am. Mineral. 1986, 71, 222. [Google Scholar]
- Speer, J.A.; Gibbs, G.V. The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am. Mineral. 1976, 61, 238–247. [Google Scholar]
- Forsyth, J.B.; Johnson, C.E.; Wilkinson, C.J. The magnetic structure of vivianite, Fe3(PO4)2.8H2O. Phys. C 1970, 3, 1127. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L.; Lyon, W. Metavivianite an intermediate mineral phase between vivianite, and ferro/ferristrunzite—A Raman spectroscopic study. Neues Jahrb. Für Mineral. 2004, 5, 228–240. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, version 1.171.40.53; Rigaku Corporation: Wroclaw, Poland, 2009.
- Kabsch, W. XDS. Acta Cryst. D 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Duxbury, D.; Khalyavin, D.; Manuel, P.; Raspino, D.; Rhodes, N.; Schooneveld, E.; Spill, E. Operational performance characteristics of the WISH detector array on the ISIS spallation neutron source. J. Instrum. 2014, 9, C12008. [Google Scholar] [CrossRef] [Green Version]
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.H.; Marks, L.D. WIEN2k: An APW + lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Haule, K.; Yee, C.-H.; Kim, K. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 2010, 81, 195107. [Google Scholar] [CrossRef] [Green Version]
- Haule, K. Structural predictions for correlated electron materials using the functional dynamical mean field theory approach. J. Phys. Soc. Jpn. 2018, 87, 041005. [Google Scholar] [CrossRef]
- Paul, A.; Birol, T. Applications of DFT + DMFT in materials science. Ann. Rev. Mater. Res. 2019, 49, 31. [Google Scholar] [CrossRef] [Green Version]
- Haule, K.; Pascut, G.L. Forces for structural optimizations in correlated materials within a DFT + embedded DMFT functional approach. Phys. Rev. B 2016, 94, 195146. [Google Scholar] [CrossRef] [Green Version]
- Koçer, C.P.; Haule, K.; Pascut, G.L.; Monserrat, B. Efficient lattice dynamics calculations for correlated materials with DFT + DMFT. Phys. Rev. B 2020, 102, 245104. [Google Scholar] [CrossRef]
- Brindusoiu, S.; Poienar, M.; Marin, C.N.; Sfirloaga, P.; Vlazan, P.; Malaescu, I. The electrical conductivity of Fe3(PO4)2·8H2O materials. J. Mater. Sci. Mater. Electron. 2019, 30, 15693–15699. [Google Scholar] [CrossRef]
- Lin, K.; Wu, C.; Chang, J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014, 10, 4071–4102. [Google Scholar] [PubMed]
- Kim, T.-G.; Park, B. Synthesis and Growth Mechanisms of One-Dimensional Strontium Hydroxyapatite Nanostructures. Inorg. Chem. 2005, 44, 9895–9901. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K.; Sarkar, D. A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Ceram. Int. 2011, 37, 2927–2930. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.D.; Wang, Y.J.; Wei, K.; Zhang, S.H.; Shi, X.T. Self-organization of 2559 hydroxyapatite nanorods through oriented attachment. Biomaterials 2007, 28, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Petricek, V.; Dusek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. Superflip—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Aroyo, M.I.; Perez-Mato, J.M.; Orobengoa, D.; Tasci, E.; G de la Flor Kirov, A. Crystallography online: Bilbao Crystallographic Server. Bulg. Chem. Commun. 2011, 43, 183–197. [Google Scholar]
- Brese, N.E.; O’Keefe, N. Bond-valence parameters for solids. Acta Cryst. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B 1985, 41, 244–247. Available online: www.iucr.org/data/datasets/bond-valence-parameters (accessed on 3 October 2022). [CrossRef] [Green Version]
- Grodzicki, M.; Redhammer, G.J.; Amthauer, G.; Schunemann, V.; Trautwein, A.X.; Velickov, B.; Schimid-Beurmann, P. Electronic structure of Fe-bearing lazulites. Am. Miner. 2003, 88, 481–488. [Google Scholar] [CrossRef]
- Fontijn, W.F.J.; van der Zaag, P.J.; Feiner, L.F.; Metselaar, R.; Devillers, M.A.C. A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J. Appl. Phys. 1999, 85, 5100. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.C.; Hush, N.S. Intervalence-transfer absorption. In Progress in Inorganic Chemistry; Cotton, F.A., Ed.; Interscience Publishers: New York, NY, USA, 1967. [Google Scholar]
- Sherman, D.M. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals. Phys. Chem. Miner. 1987, 14, 355–363. [Google Scholar] [CrossRef]
- Rada, S.; Dehelean, A.; Stan, M.; Chelcea, R.; Culea, E. Structural studies on iron–tellurite glasses prepared by sol–gel method. J. Alloys Compd. 2011, 509, 147–151. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. A Contribution to the Optics of Pigments. Z. Technol. Phys. 1931, 12, 593–599. [Google Scholar]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Wawrzyńska, E.; Coldea, R.; Wheeler, E.M.; Sörgel, T.; Jansen, M.; Ibberson, R.M.; Radaelli, P.G.; Koza, M.M. Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2. Phys. Rev. B 2008, 77, 094439. [Google Scholar] [CrossRef] [Green Version]
- Pascut, G.L.; Coldea, R.; Radaelli, P.G.; Bombardi, A.; Beutier, G.; Mazin, I.I.; Johannes, M.D.; Jansen, M. Direct Observation of Charge Order in Triangular Metallic AgNiO2 by Single-Crystal Resonant X-Ray Scattering. Phys. Rev. Lett. 2011, 106, 157206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carvajal, J.; Hennion, M.; Moussa, F.; Moudden, A.H.; Pinsard, L.; Revcolevschi, A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Phys. Rev. B 1998, 57, R3189(R). [Google Scholar] [CrossRef]
- Colella, R.; Shen, Q. Resonant scattering and multiple Bragg X-ray diffraction in LaMnO3. a classical view. Acta Cryst. 2006, A62, 459–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-H.; Koo, J.; Song, C.; Koo, T.Y.; Lee, K.-B.; Jeong, Y.H. Resonant x-ray scattering study on multiferroic BiMnO3. Phys. Rev. B 2006, 73, 224112. [Google Scholar] [CrossRef] [Green Version]
- Belik, A.A.; Iikubo, S.; Yokosawa, T.; Kodama, K.; Igawa, N.; Shamoto, S.; Azuma, M.; Takano, M.; Kimoto, K.; Matsui, Y.; et al. Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3. J. Am. Chem. Soc. 2007, 129, 971–977. [Google Scholar] [CrossRef]
- Pascut, G.L.; Haule, K. Role of Orbital Selectivity on Crystal Structures and Electronic States in BiMnO3 and LaMnO3 Perovskites. Available online: https://arxiv.org/abs/2005.12179 (accessed on 3 October 2022).
- Medarde, M.L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 1997, 9, 1679. [Google Scholar] [CrossRef]
- Garca-Muñoz, J.L.; Aranda MA, G.; Alonso, J.A.; Martnez-Lope, M.J. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3. Phys. Rev. B 2009, 79, 134432. [Google Scholar] [CrossRef]
- Alonso, J.A.; García-Muñoz, J.L.; Fernández-Díaz, M.T.; Aranda, M.A.; Martínez-Lope, M.J.; Casais, M.T. Charge disproportionation in RNiO3 perovskites: Simultaneous metal-insulator and structural transition in ynio3. Phys. Rev. Lett. 1999, 82, 3871–3874. [Google Scholar] [CrossRef]
- Haule, K.; Pascut, G.L. Mott Transition and Magnetism in Rare Earth Nickelates and its Fingerprint on the X-ray Scattering. Sci. Rep. 2017, 7, 10375. [Google Scholar] [CrossRef] [Green Version]
- Stanislavchuk, T.N.; Pascut, G.L.; Litvinchuk, A.P.; Liu, Z.; Choi, S.; Gutmann, M.J.; Gao, B.; Haule, K.; Kiryukhin, V.; Cheong, S.-W.; et al. Spectroscopic and first principle DFT+eDMFT study of complex structural, electronic, and vibrational properties of M2Mo3O8 (M = Fe, Mn) polar magnets. Phys. Rev. B 2020, 102, 115139. [Google Scholar] [CrossRef]
- Park, K.; Pascut, G.L.; Khanal, G.; Yokosuk, M.O.; Xu, X.; Gao, B.; Gutmann, M.J.; Litvinchuk, A.P.; Kiryukhin, V.; Cheong, S.W.; et al. Band-Mott mixing hybridizes the gap in Fe2Mo3O8. Phys. Rev. B 2021, 104, 195143. [Google Scholar] [CrossRef]
Instrument | P24 | P24 | Rigaku Oxford Diffraction Xtalab Synergy S | Rigaku Oxford Diffraction Xtalab Synergy S |
---|---|---|---|---|
Empirical formula | Fe3P4H12O20 | Fe3P4H12O20 | Fe3P4H12O20 | Fe3P4H12O20 |
Formula weight | 623.5 | 623.5 | 623.5 | 623.5 |
Temperature | 300(4) K | 100(2) K | 300(4) K | 100(2) K |
Wavelength | 0.5166 Å | 0.5166 Å | 0.71073 Å | 0.71073 Å |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P21/n | P21/c | P21/n | P21/c |
Unit cell dimensions | a = 8.7512(12) Å b = 16.6203(29) Å c = 5.1560(10) Å β = 90.865(14)° | a = 10.1057(25) Å b = 16.5549(23) Å c = 10.2414(14) Å β = 119.423(7)° | a = 8.7363(1) Å b = 16.5905(2) Å c = 5.1443(1) Å β = 90.8860(13)° | a = 10.0916(2) Å b = 16.5328(2) Å c = 10.2303(2) Å β = 119.449(3)° |
Volume | 749.8(2) Å3 | 1492.3(5) Å3 | 745.524(19) Å3 | 1486.31(6) Å3 |
Z | 2 | 4 | 2 | 4 |
Density (calculated) | 2.7616 g/cm3 | 2.7752 g/cm3 | 2.7776 g/cm3 | 2.7864 g/cm3 |
Absorption coefficient | 1.337 mm−1 | 1.343 mm−1 | 3.425 mm−1 | 3.436 mm−1 |
F(000) | 620 | 1240 | 620 | 1240 |
Crystal size | - | - | 0.32 × 0.06 × 0.05 mm3 | 0.32 × 0.06 × 0.05 mm3 |
Theta range for data collection | 1.78 to 43.09° | 1.68 to 43.1° | 2.46 to 37.565° | 2.33 to 37.88° |
Index ranges | −22 ≤ h ≤ 22 −43 ≤ k ≤ 43 −7 ≤ l ≤ 8 | −25 ≤ h ≤ 26 −43 ≤ k ≤ 43 −23 ≤ l ≤ 24 | −15 ≤ h ≤ 14 −28 ≤ k ≤ 28 −8 ≤ l ≤ 8 | −17 ≤ h ≤ 17 −28 ≤ k ≤ 28 −17 ≤ l ≤ 17 |
Reflections collected | 30,685 | 64,524 | 32,669 | 64,953 |
Independent reflections (I > 3σ(I)/all) | 7710/8114 | 14,661/17,688 | 3261/3863 | 5263/7690 |
R(int) | 0.071 | 0.0645 | 0.0519 | 0.0571 |
Absorption correction | Empirical | Empirical | Numerical Gauss Integration | Numerical Gauss Integration |
Max. and min. transmission | – | – | 1.0 and 0.41 | 1.0 and 0.47 |
Refinement method | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 | Full-matrix least-squares on F2 |
Data/constraints/parameters | 8114/24/125 | 17,688/48/245 | 3863/24/124 | 7690/48/244 |
Goodness-of-fit on F2 (I > 3σ(I)/all) | 2.49/2.58 | 2.48/2.30 | 2.03/1.90 | 1.83/1.62 |
Final R-indices (I > 3σ(I)) | R1 = 0.0438 wR2 = 0.1470 | R1 = 0.0437 wR2 = 0.1449 | R1 = 0.0301 wR2 = 0.0865 | R1 = 0.0310 wR2 = 0.0881 |
Final R-indices (all data) | R1 = 0.0459 wR2 = 0.1564 | R1 = 0.0509 wR2 = 0.1475 | R1 = 0.0368 wR2 = 0.0885 | R1 = 0.0497 wR2 = 0.0951 |
Largest diff. peak and hole | 1.47 and −0.90 e/Å3 | 1.24 and −1.25 e/Å3 | 0.66 and −1.07 e/Å3 | 0.85 and −1.19 e/Å3 |
Atom | x | y | z | uiso (Å2) |
---|---|---|---|---|
Fe2+(1) | ½ | ½ | ½ | 0.010950(9) |
Fe3+(2) | 0.13144(3) | 0.70271(2) | 0.24642(5) | 0.00720(6) |
P(1) | 0.19493(5) | 0.57930(3) | 0.73474(9) | 0.00826(11) |
P(2) | 0.50621(5) | 0.69413(3) | 0.25517(9) | 0.00642(10) |
O(1) | 0.14448(18) | 0.63823(8) | 0.9367(3) | 0.0160(4) |
O(2) | 0.61151(16) | 0.72297(8) | 0.0436(3) | 0.0114(3) |
O(3) | 0.48438(16) | 0.59961(8) | 0.2148(3) | 0.0108(3) |
O(4) | 0.35094(15) | 0.73528(9) | 0.2366(3) | 0.0145(4) |
O(5) | 0.30667(16) | 0.44317(7) | 0.3103(3) | 0.0223(5) |
O(6) | 0.1022(2) | 0.49977(9) | 0.7934(4) | 0.0303(6) |
O(7) | 0.57932(17) | 0.70142(7) | 0.5228((3) | 0.0114(3) |
O(8) | 0.15868(18) | 0.60588(8) | 0.4606(3) | 0.0146(4) |
O(9) | −0.10176(15) | 0.67714(8) | 0.2636(3) | 0.0180(4) |
O(10) | 0.36376(17) | 0.55770(9) | 0.7667(3) | 0.0162(4) |
H1O3 | 0.46424 | 0.58572 | 0.06122 | 0.0130 |
H1O5 | 0.27385 | 0.46079 | 0.17132 | 0.0268 |
H2O5 | 0.26590 | 0.40394 | 0.37711 | 0.0268 |
H1O9 | −0.16191 | 0.69906 | 0.16210 | 0.0216 |
H2O9 | −0.13336 | 0.64516 | 0.37180 | 0.0216 |
H1O6 | 0.05410 | 0.45848 | 0.82379 | 0.0363 |
Atom | x | y | z | uiso (Å2) |
---|---|---|---|---|
Fe3+(1) | 0.44712(3) | 0.700078(15) | 0.32036(3) | 0.00329(9) |
Fe2+(2) | 0.74909(3) | 0.499263(15) | 0.25324(3) | 0.00432(9) |
Fe3+(3) | 0.94749(3) | 0.702325(15) | 0.81184(3) | 0.00328(9) |
P(1) | 0.22520(6) | 0.57863(3) | 0.02106(5) | 0.00384(15) |
P(2) | 0.72392(6) | 0.57785(3) | 0.52719(5) | 0.00372(15) |
P(3) | 0.13792(6) | 0.80377(3) | 0.12925(5) | 0.00321(15) |
P(4) | 0.63924(6) | 0.69500(3) | 0.13896(5) | 0.00313(15) |
O(1) | 0.60509(15) | 0.60030(8) | 0.12305(15) | 0.0055(5) |
O(2) | 0.04028(15) | 0.76381(8) | 0.18693(15) | 0.0060(5) |
O(3) | 0.10500(15) | 0.89858(8) | 0.11500(15) | 0.0053(5) |
O(4) | 0.57932(16) | 0.77317(8) | 0.48195(14) | 0.0055(4) |
O(5) | 0.56225(15) | 0.59929(8) | 0.41183(15) | 0.0055(4) |
O(6) | 0.06632(15) | 0.60449(8) | −0.09539(15) | 0.0061(5) |
O(7) | 0.30356(16) | 0.63667(8) | 0.14908(15) | 0.0066(5) |
O(8) | 0.56779(16) | 0.73350(8) | 0.22446(15) | 0.0070(5) |
O(9) | 0.81294(15) | 0.70012(8) | 0.22973(15) | 0.0050(4) |
O(10) | 0.30685(15) | 0.79620(8) | 0.23661(14) | 0.0048(4) |
O(11) | 0.09387(15) | 0.77382(8) | −0.02750(14) | 0.0050(4) |
O(12) | 0.93342(13) | 0.55593(8) | 0.23685(17) | 0.0087(5) |
O(13) | 0.21307(17) | 0.49793(8) | 0.10164(16) | 0.0087(5) |
O(14) | 0.79412(16) | 0.63902(8) | 0.65199(15) | 0.0061(5) |
O(15) | 0.83661(11) | 0.67851(7) | 0.93809(15) | 0.0068(5) |
O(16) | 0.56496(17) | 0.44089(5) | 0.26291(16) | 0.0094(5) |
O(17) | 0.33467(15) | 0.66954(7) | 0.43550(15) | 0.0071(5) |
O(18) | 0.32267(16) | 0.55801(8) | −0.05033(15) | 0.0062(5) |
O(19) | 0.72627(17) | 0.49437(8) | 0.60642(16) | 0.0081(5) |
O(20) | 0.82174(16) | 0.56083(8) | 0.45385(15) | 0.0061(5) |
H1O16 | 0.47983 | 0.46119 | 0.22068 | 0.0113 |
H2O16 | 0.57951 | 0.39821 | 0.30884 | 0.0113 |
H1O17 | 0.32649 | 0.62190 | 0.45271 | 0.0085 |
H2O17 | 0.29809 | 0.70502 | 0.46412 | 0.0085 |
H1O12 | 0.94752 | 0.60480 | 0.25012 | 0.0105 |
H2O12 | 0.98925 | 0.52856 | 0.21735 | 0.0105 |
H1O15 | 0.86888 | 0.69868 | 1.02152 | 0.0082 |
H2O15 | 0.76146 | 0.64913 | 0.90348 | 0.0082 |
H1O1 | 0.52033 | 0.58753 | 0.05553 | 0.0066 |
H1O3 | 0.02027 | 0.91174 | 0.04792 | 0.0063 |
H1O13 | 0.20686 | 0.45668 | 0.14283 | 0.0104 |
H1O19 | 0.72748 | 0.45145 | 0.64716 | 0.0097 |
Temperature | 300 K | 100 K |
---|---|---|
Fe2+-O | Cyan | Cyan |
2.0654(16) Å x2 | 2.0620(15) Å 2.0751(15) Å | |
2.1548(14) Å x2 | 2.1389(18) Å 2.1617(17) Å | |
2.2127(15) Å x2 | 2.1847(13) Å 2.1919(13) Å | |
Average | 2.1443 Å | 2.1357 Å |
Bond-valence sum | 2.006 | 2.045 |
Fe3+-O | Beige 1.9240(16) Å 1.9605(15) Å 1.9738(15) Å 1.9937(15) Å 2.0110(14) Å 2.0842(14) Å | Orange/Beige 1.9422(13) Å/1.9174(13) Å 1.9505(13) Å/1.9586(13) Å 1.9810(20) Å/1.9732(12) Å 1.9832(13) Å/2.0000(19) Å 2.0176(14) Å/2.0073(14) Å 2.0602(19) Å/2.1205(17) Å |
Average | 1.9912 Å | 1.9892 Å/1.9961 Å |
Bond-valence sum | 3.021 | 3.028/2.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poienar, M.; Gutmann, M.J.; Pascut, G.L.; Petříček, V.; Stenning, G.; Vlazan, P.; Sfirloaga, P.; Paulmann, C.; Tolkiehn, M.; Manuel, P.; et al. Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4. Materials 2022, 15, 8059. https://doi.org/10.3390/ma15228059
Poienar M, Gutmann MJ, Pascut GL, Petříček V, Stenning G, Vlazan P, Sfirloaga P, Paulmann C, Tolkiehn M, Manuel P, et al. Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4. Materials. 2022; 15(22):8059. https://doi.org/10.3390/ma15228059
Chicago/Turabian StylePoienar, Maria, Matthias Josef Gutmann, Gheorghe Lucian Pascut, Václav Petříček, Gavin Stenning, Paulina Vlazan, Paula Sfirloaga, Carsten Paulmann, Martin Tolkiehn, Pascal Manuel, and et al. 2022. "Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4" Materials 15, no. 22: 8059. https://doi.org/10.3390/ma15228059
APA StylePoienar, M., Gutmann, M. J., Pascut, G. L., Petříček, V., Stenning, G., Vlazan, P., Sfirloaga, P., Paulmann, C., Tolkiehn, M., Manuel, P., & Veber, P. (2022). Phase Transitions and Physical Properties of the Mixed Valence Iron Phosphate Fe3(PO3OH)4(H2O)4. Materials, 15(22), 8059. https://doi.org/10.3390/ma15228059