Contribution to Bone Formation of the Schneiderian Membrane after Sinus Augmentation: A Histological Study in Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Animals
2.3. Study Design
2.4. Sample Size
2.5. Randomization and Allocation Concealment
2.6. Experimental Procedures
2.7. Housing and Husbandry
2.8. Euthanasia
2.9. Histological Preparation
2.10. Histological Analyses
2.11. Calibration for Histomorphometric Evaluations
2.12. Experimental Outcomes
2.13. Statistical Methods
3. Results
3.1. Tissues in Contact with the Sinus Mucosa; Linear Measurements
3.2. Morphometric Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juzikis, E.; Gaubys, A.; Rusilas, H. Uses of maxillary sinus lateral wall bony window in an open window sinus lift procedure: Literature review. Stomatologija 2018, 20, 14–21. [Google Scholar] [PubMed]
- Busenlechner, D.; Huber, C.D.; Vasak, C.; Dobsak, A.; Gruber, R.; Watzek, G. Sinus augmentation analysis revised: The gradient of graft consolidation. Clin. Oral Implant. Res. 2009, 20, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Scala, A.; Botticelli, D.; Faeda, R.S.; Garcia Rangel, I., Jr.; Américo de Oliveira, J.; Lang, N.P. Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: An experimental study in monkeys. Clin. Oral Implant. Res. 2012, 23, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Scala, A.; Lang, N.P.; de Carvalho Cardoso, L.; Pantani, F.; Schweikert, M.; Botticelli, D. Sequential healing of the elevated sinus floor after applying autologous bone grafting: An experimental study in minipigs. Clin. Oral Implant. Res. 2015, 26, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Caneva, M.; Lang, N.P.; Garcia Rangel, I.J.; Ferreira, S.; Caneva, M.; De Santis, E.; Botticelli, D. Sinus mucosa elevation using Bio-Oss(®) or Gingistat(®) collagen sponge: An experimental study in rabbits. Clin. Oral Implant. Res. 2017, 28, e21–e30. [Google Scholar] [CrossRef]
- Iida, T.; Carneiro Martins Neto, E.; Botticelli, D.; Apaza Alccayhuaman, K.A.; Lang, N.P.; Xavier, S.P. Influence of a collagen membrane positioned subjacent the sinus mucosa following the elevation of the maxillary sinus. A histomorphometric study in rabbits. Clin. Oral Implant. Res. 2017, 28, 1567–1576. [Google Scholar] [CrossRef]
- Iida, T.; Silva, E.R.; Lang, N.P.; Apaza Alccayhuaman, K.A.; Botticelli, D.; Xavier, S.P. Histological and micro-computed tomography evaluations of newly formed bone after maxillary sinus augmentation using a xenograft with similar density and mineral content of bone: An experimental study in rabbits. Clin. Exp. Dent. Res. 2018, 4, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Cicconetti, A.; Sacchetti, B.; Bartoli, A.; Michienzi, S.; Corsi, A.; Funari, A.; Robey, P.G.; Bianco, P.; Riminucci, M. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 618.e1–618.e12. [Google Scholar] [CrossRef]
- Gruber, R.; Kandler, B.; Fuerst, G.; Fisher, M.B.; Watzek, G. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin. Oral Implant. Res. 2004, 15, 575–580. [Google Scholar] [CrossRef]
- Srouji, S.; Ben-David, D.; Lotan, R.; Riminucci, M.; Livne, E.; Bianco, P. The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: An ectopic tissue transplant model simulating sinus lifting. Int. J. Oral Maxillofac. Surg. 2010, 39, 793–801. [Google Scholar] [CrossRef]
- Scala, A.; Botticelli, D.; Rangel, I.G., Jr.; de Oliveira, J.A.; Okamoto, R.; Lang, N.P. Early healing after elevation of the maxillary sinus floor applying a lateral access: A histological study in monkeys. Clin. Oral Implant. Res. 2010, 21, 1320–1326. [Google Scholar] [CrossRef]
- Scala, A.; Lang, N.P.; Velez, J.U.; Favero, R.; Bengazi, F.; Botticelli, D. Effects of a collagen membrane positioned between augmentation material and the sinus mucosa in the elevation of the maxillary sinus floor. An experimental study in sheep. Clin. Oral Implant. Res. 2016, 27, 1454–1461. [Google Scholar] [CrossRef]
- Favero, V.; Lang, N.P.; Canullo, L.; Urbizo Velez, J.; Bengazi, F.; Botticelli, D. Sinus floor elevation outcomes following perforation of the Schneiderian membrane. An experimental study in sheep. Clin. Oral Implant. Res. 2016, 27, 233–240. [Google Scholar] [CrossRef]
- Morimoto, A.; Kobayashi, N.; Ferri, M.; Iezzi, G.; Piattelli, A.; Fortich Mesa, N.; Botticelli, D. Influence on Implant Bone Healing of a Collagen Membrane Placed Subjacent the Sinus Mucosa—A Randomized Clinical Trial on Sinus Floor Elevation. Dent. J. 2022, 10, 105. [Google Scholar] [CrossRef]
- Omori, Y.; Ricardo Silva, E.; Botticelli, D.; Apaza Alccayhuaman, K.A.; Lang, N.P.; Xavier, S.P. Reposition of the bone plate over the antrostomy in maxillary sinus augmentation: A histomorphometric study in rabbits. Clin. Oral Implant. Res. 2018, 29, 821–834. [Google Scholar] [CrossRef]
- Masuda, K.; Silva, E.R.; Botticelli, D.; Apaza Alccayhuaman, K.A.; Xavier, S.P. Antrostomy Preparation for Maxillary Sinus Floor Augmentation Using Drills or a Sonic Instrument: A Microcomputed Tomography and Histomorphometric Study in Rabbits. Int. J. Oral Maxillofac. Implant. 2019, 34, 819–827. [Google Scholar] [CrossRef]
- Amari, Y.; Botticelli, D.; Apaza Alccayhuaman, K.A.; Hirota, A.; Silva, E.R.; Xavier, S.P. The Influence on Healing of Bony Window Elevated Inward in the Sinus Cavity as Cortical Bone Graft: A Histomorphometric Study in Rabbit Model. Int. J. Oral Maxillofac. Implant. 2020, 35, 879–887. [Google Scholar] [CrossRef]
- Perini, A.; Viña-Almunia, J.; Carda, C.; Martín de Llano, J.J.; Botticelli, D.; Peñarrocha-Diago, M. Influence of the Use of a Collagen Membrane Placed on the Bone Window after Sinus Floor Augmentation—An Experimental Study in Rabbits. Dent. J. 2021, 9, 131. [Google Scholar] [CrossRef]
- Ferreira Balan, V.; Botticelli, D.; Peñarrocha-Oltra, D.; Masuda, K.; Pires Godoy, E.; Xavier, S.P. Maxillary Sinus Floor Augmentation with Two Different Inorganic Bovine Bone Grafts: An Experimental Study in Rabbits. Chin. J. Dent. Res. 2022, 25, 93–105. [Google Scholar] [CrossRef]
- Costa, M.M.; Botticelli, D.; Moses, O.; Omori, Y.; Fujiwara, S.; Silva, E.R.; Xavier, S.P. Maxillary Sinus Augmentation Using Ceramic Alloplastic Granules or Paste: An Experimental Study in Rabbits. Dent. J. 2021, 9, 65. [Google Scholar] [CrossRef]
- Godoy, E.P.; Apaza Alccayhuaman, K.A.; Botticelli, D.; Amaroli, A.; Balan, V.F.; Silva, E.R.; Xavier, S.P. Osteoconductivity of Bovine Xenograft Granules of Different Sizes in Sinus Lift: A Histomorphometric Study in Rabbits. Dent. J. 2021, 9, 61. [Google Scholar] [CrossRef]
- Asai, S.; Shimizu, Y.; Ooya, K. Maxillary sinus augmentation model in rabbits: Effect of occluded nasal ostium on new bone formation. Clin. Oral Implant. Res. 2002, 13, 405–409. [Google Scholar] [CrossRef]
- Xu, H.; Shimizu, Y.; Asai, S.; Ooya, K. Grafting of deproteinized bone particles inhibits bone resorption after maxillary sinus floor elevation. Clin. Oral Implant. Res. 2004, 15, 126–133. [Google Scholar] [CrossRef]
- Jensen, S.S.; Aaboe, M.; Janner, S.F.; Saulacic, N.; Bornstein, M.M.; Bosshardt, D.D.; Buser, D. Influence of particle size of deproteinized bovine bone mineral on new bone formation and implant stability after simultaneous sinus floor elevation: A histomorphometric study in minipigs. Clin. Implant. Dent. Relat. Res. 2015, 17, 274–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, S.; Ferri, M.; Imai, H.; Fortich Mesa, N.; Blanco Victorio, D.J.; Apaza Alccayhuaman, K.A.; Botticelli, D. Involvement of the maxillary sinus ostium (MSO) in the edematous processes after sinus floor augmentation: A cone-beam computed tomographic study. Int. J. Implant. Dent. 2020, 6, 35. [Google Scholar] [CrossRef]
- Kato, S.; Omori, Y.; Kanayama, M.; Hirota, A.; Ferri, M.; Apaza Alccayhuaman, K.A.; Botticelli, D. Sinus Mucosa Thickness Changes and Ostium Involvement after Maxillary Sinus Floor Elevation in Sinus with Septa. A Cone Beam Computed Tomography Study. Dent. J. 2021, 9, 82. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Liu, Y.; Qin, L.; Song, Y.L.; Xie, C.; Li, D.H. Longitudinal response of membrane thickness and ostium patency following sinus floor elevation: A prospective cohort study. Clin. Oral Implant. Res. 2016, 27, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Makary, C.; Rebaudi, A.; Menhall, A.; Naaman, N. Changes in Sinus Membrane Thickness after Lateral Sinus Floor Elevation: A Radiographic Study. Int. J. Oral Maxillofac. Implant. 2016, 31, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, M.; Botticelli, D.; Silva, E.R.; Xavier, S.P.; Baba, S. Incidence of Sinus Mucosa Perforations during Healing after Sinus Elevation Using Deproteinized Bovine Bone Mineral as Grafting Material: A Histologic Evaluation in a Rabbit Model. Int. J. Oral Maxillofac. Implant. 2021, 36, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Botticelli, D.; De Santis, E.; Kanayama, M.; Ferreira, S.; Rangel-Garcia, I., Jr. Sinus mucosa thinning and perforation after sinus augmentation. A histological study in rabbits. Oral Maxillofac. Surg. 2021, 25, 477–485. [Google Scholar] [CrossRef]
- Favero, R.; Apaza Alccayhuaman, K.A.; Botticelli, D.; Xavier, S.P.; Ferreira Balan, V.; Macchi, V.; De Caro, R. Sinus Mucosa Thinning and Perforations after Sinus Lifting Performed with Different Xenografts: A Histological Analysis in Rabbits. Dent. J 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Aimetti, M.; Massei, G.; Morra, M.; Cardesi, E.; Romano, F. Correlation between gingival phenotype and Schneiderian membrane thickness. Int. J. Oral Maxillofac. Implant. 2008, 23, 1128–1132. [Google Scholar]
- Kawakami, S.; Botticelli, D.; Nakajima, Y.; Sakuma, S.; Baba, S. Anatomical analyses for maxillary sinus floor augmentation with a lateral approach: A cone beam computed tomography study. Ann. Anat. 2019, 226, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, D.; Lang, N.P. Dynamics of osseointegration in various human and animal models—A comparative analysis. Clin. Oral Implant. Res. 2017, 28, 742–748. [Google Scholar] [CrossRef] [PubMed]
Test Sites | Control Sites | |||||
---|---|---|---|---|---|---|
Basal | Intermediate | Middle | Basal | Intermediate | Middle | |
New bone | 0.0 ± 0.0 b,c | 18.9 ± 15.0 a,b,c | 67.8 ± 12.6 a | 0.0 ± 0.0 b | 1.0 ± 2.6 a,b | 7.7 ± 17.4 a,b |
Xenograft | 58.3 ± 14.4 b,c | 39.8 ± 5.8 a,b,c | - | 58.9 ± 12.9 b | 60.0 ± 12.9 a,b | 53.1 ± 19.4 b |
Soft tissue | 41.7 ± 14.4 | 41.2 ± 13.2 | - | 41.1 ± 12.9 | 39.0 ± 13.2 | 39.2 ± 15.3 |
Test Sites | Control Sites | |||||
---|---|---|---|---|---|---|
Basal | Intermediate | Middle | Basal | Intermediate | Middle | |
New bone | 6.0 ± 9.4 b | 14.5 ± 15.0 b | 33.8 ± 29.3 a | 7.2 ± 11.8 b | 4.9 ± 12.0 b | 0.0 ± 0.0 a,b |
Xenograft | 41.6 ± 15.6 b | 30.8 ± 11.7 a,b | - | 51.4 ± 25.7 b | 61.2 ± 16.2 a,b | 47.7 ± 9.1 b |
Soft tissue | 52.4 ± 22.4 | 54.7 ± 17.9 | - | 41.3 ± 19.7 | 33.9 ± 10.5 | 52.3 ± 9.1 |
Test Sites | Control Sites | |||||
---|---|---|---|---|---|---|
Basal | Intermediate | Middle | Basal | Intermediate | Middle | |
New bone | 7.1 ± 13.7 b | 3.3 ± 4.2 b | 19.1 ± 19.3 a | 1.9 ± 3.0 b | 0.8 ± 1.5 b | 4.4 ± 10.7 a,b |
Xenograft | 50.2 ± 12.3 b | 47.5 ± 14.5 b | - | 52.1 ± 16.6 b | 47.4 ± 20.5 b | 54.7 ± 14.8 b |
Soft tissue | 42.7 ± 17.1 | 49.2 ± 14.8 | - | 46.0 ± 14.4 | 51.8 ± 21.5 | 40.9 ± 9.9 |
Test Sites | Control Sites | ||||||
---|---|---|---|---|---|---|---|
Bone Walls | Basal | Intermediate | Bone Walls | Basal | Intermediate | Middle | |
New bone | * 6.4 ± 5.1 b | 0.9 ± 2.3 b | 6.3 ± 2.3 a | 7.0 ± 6.9 b,c | 0.6 ± 0.9 b | 0.2 ± 0.5 a,c | 2.3 ± 2.8 |
Xenograft | * 47.9 ± 3.7 b,c | 45.5 ± 6.1 a,b | 39.7 ± 7.8 c | 45.9 ± 54.9 b | 54.4 ± 7.9 a,b | 51.1 ± 10.5 | 46.9 ± 13.3 |
Soft tissue | * 43.9 ± 5.7 b,c | 62.3 ± 5.6 a,b | 60.3 ± 10.8 c | 47.1 ± 2.8 | 52.4 ± 9.0 a | 56.7 ± 12.5 | 59.5 ± 14.5 |
Test Sites | Control Sites | ||||||
---|---|---|---|---|---|---|---|
Bone Walls | Basal | Intermediate | Bone Walls | Basal | Intermediate | Middle | |
New bone | * 17.1 ± 8.9 a,b | 3.4 ± 3.8 b | 12.0 ± 9.3 a | 22.9 ± 8.7 a,b,c,d | 5.3 ± 6.1 b | 1.5 ± 2.1 a,c | 0.5 ±1.2 d |
Xenograft | * 42.7 ± 8.6 | 39.3 ± 8.2 | 37.8 ± 7.9 | 41.6 ± 7.2 | 38.3 ± 7.1 | 44.9 ± 8.0 | 46.9 ±5.1 |
Soft tissue | * 40.2 ± 5.6 b,c | 67.0 ± 6.8 b | 58.4 ± 10.7 c | 35.5 ± 4.5 b,c,d | 65.4 ± 4.5 b | 62.4 ± 9.6 c | 61.5 ±6.3 d |
Test Sites | Control Sites | ||||||
---|---|---|---|---|---|---|---|
Bone Walls | Basal | Intermediate | Bone Walls | Basal | Intermediate | Middle | |
New bone | * 27.0 ± 10.3 a,b,c | 13.5 ± 7.3 b | 9.3 ± 10.5 c | 33.4 ± 4.2 a,b,c,d | 14.0 ± 4.0 b | 7.7 ± 8.5 c | 5.0 ± 5.9 d |
Xenograft | * 36.8 ± 9.5 b | 42.8 ± 8.9 b | 41.2 ± 11.1 | 36.0 ± 4.1 d | 45.6 ± 7.0 | 46.3 ± 10.3 | 49.0 ± 8.2 d |
Soft tissue | * 36.2 ± 10.3 b,c | 50.0 ± 9.5 b | 54.3 ± 7.5 c | 30.6 ± 2.8 b,c,d | 48.8 ± 15.0 b | 52.9 ± 7.4 c | 52.4 ± 11.3 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.T.; Kusano, K.; Taniyama, T.; Sakuma, S.; Nakajima, Y.; Xavier, S.P.; Baba, S. Contribution to Bone Formation of the Schneiderian Membrane after Sinus Augmentation: A Histological Study in Rabbits. Materials 2022, 15, 8077. https://doi.org/10.3390/ma15228077
Lim ST, Kusano K, Taniyama T, Sakuma S, Nakajima Y, Xavier SP, Baba S. Contribution to Bone Formation of the Schneiderian Membrane after Sinus Augmentation: A Histological Study in Rabbits. Materials. 2022; 15(22):8077. https://doi.org/10.3390/ma15228077
Chicago/Turabian StyleLim, Su Tien, Kaoru Kusano, Tomohide Taniyama, Shigeru Sakuma, Yasushi Nakajima, Samuel Porfirio Xavier, and Shunsuke Baba. 2022. "Contribution to Bone Formation of the Schneiderian Membrane after Sinus Augmentation: A Histological Study in Rabbits" Materials 15, no. 22: 8077. https://doi.org/10.3390/ma15228077
APA StyleLim, S. T., Kusano, K., Taniyama, T., Sakuma, S., Nakajima, Y., Xavier, S. P., & Baba, S. (2022). Contribution to Bone Formation of the Schneiderian Membrane after Sinus Augmentation: A Histological Study in Rabbits. Materials, 15(22), 8077. https://doi.org/10.3390/ma15228077