Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Catalytic Performance
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.W.; Tu, C.C.; Chen, C.H.; Lin, Y.C. Highly Selective Silica-supported Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Adipic Acid to 1,6-hexanediol. ChemCatChem 2018, 10, 5449–5458. [Google Scholar] [CrossRef]
- Hara, Y.; Endou, K.; Nishimura, S. Process for Preparing 1,6-Hexanediol. U.S. Patent 5969194A, 2018. [Google Scholar]
- Silva, A.M.; Santos, O.A.; Morales, M.A.; Baggio-Saitovitch, E.M.; Jordão, E.; Fraga, M.A. Role of catalyst preparation on determining selective sites for hydrogenation of dimethyl adipate over RuSn/Al2O3. J. Mol. Catal. A: Chem. 2006, 253, 62–69. [Google Scholar] [CrossRef]
- Tebben, G.D.; Heck, L.E. Esterification of Adipic Acid, 6-Hydroxycaproic Acid with Methanol, Catalytic Hydrogenation, Distillation with a Membrane. 2007. [Google Scholar]
- Dias, E.L.; Shoemaker, J.A.W. Process for Production of Adipic Acid from 1,6-Hexanediol. U.S. Patent 2013/0331606A1, 2013. [Google Scholar]
- Corradini, S.A.D.S.; Lenzi, G.G.; Lenzi, M.K. Characterization and hydrogenation of methyl oleate over Ru/TiO2, Ru-Sn/TiO2 catalysts. J. Non-Cryst. Solids 2008, 354, 4865–4870. [Google Scholar] [CrossRef]
- Mendes, M.; Santos, O.; Jordão, E.; Silva, A. Hydrogenation of oleic acid over ruthenium catalysts. Appl. Catal. A Gen. 2001, 217, 253–262. [Google Scholar] [CrossRef]
- Van Der Steen, P.; Scholten, J. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers: I. Adsorption of the reaction modifiers, water and ε-caprolactam, on ruthenium. Appl. Catal. 1990, 58, 281–289. [Google Scholar] [CrossRef]
- Suppino, R.S.; Landers, R.; Cobo, A.J.G. Partial hydrogenation of benzene on Ru catalysts: Effects of additives in the reaction medium. Appl. Catal. A Gen. 2013, 452, 9–16. [Google Scholar] [CrossRef]
- Longo, L.; Taghavi, S.; Ghedini, E.; Menegazzo, F.; Di Michele, A.; Cruciani, G.; Signoretto, M. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts. ChemsSusChem 2022, 15, e202200437. [Google Scholar] [CrossRef] [PubMed]
- Suppino, R.S. Influence of noble metals (Pd, Pt) on the performance of Ru/Al2O3 based catalysts for toluene hydrogenation in liquid phase. Appl. Catal. A 2016, 525, 41–49. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Mazzieri, V.A.; Vicerich, M.A.; Vera, C.R.; Pieck, C.L. Influence of the Support Material on the Activity and Selectivity of Ru–Sn–B Catalysts for the Selective Hydrogenation of Methyl Oleate. Ind. Eng. Chem. Res. 2015, 54, 6845–6854. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Q.; Zhu, M.; Wang, Z. Selective hydrogenation of benzene to cyclohexene over Ru–Zn/ZrO2 catalysts prepared by a two-step impregnation method. J. Mol. Catal. A Chem. 2016, 413, 85–93. [Google Scholar] [CrossRef]
- Rodina, V.; Ermakov, D.Y.; Saraev, A.; Reshetnikov, S.; Yakovlev, V. Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al2O3 in the flow reactor. Appl. Catal. B Environ. 2017, 209, 611–620. [Google Scholar] [CrossRef]
- Kim, T.W.; Oh, J.; Suh, Y. Hydrogenation of 2-benzylpyridine over alumina-supported Ru catalysts: Use of Ru3(CO)12 as a Ru precursor. Appl. Catal. A Gen. 2017, 547, 183–190. [Google Scholar] [CrossRef]
- Martin, A.A.; Namal, D.S.W.I.; Ekaterini, K. Process for Preparing 1,6-Hexanediol. U.S. Patent EP2797866A4, 5 August 2015. [Google Scholar]
- Costa, G.P. Role of ZnNb2O6 in ZnO-promoted amorphous-Nb2O5 supported Ru catalyst for the partial hydrogenation of benzene. Mater. Today 2021, 19, 100397. [Google Scholar] [CrossRef]
- Luo, W.; Deka, U.; Beale, A.M.; van Eck, E.R.; Bruijnincx, P.C.; Weckhuysen, B.M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. J. Catal. 2013, 301, 175–186. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H. Mechanistic Diversity of Transfer Hydrogenolysis over Noble Metal Nanocatalysts: Pt- and Ru-Catalyzed Azo-Hydrogenolysis by Various Hydrogen Donors. J. Phys. Chem. 2022, 126, 17102–17133. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Hu, J.; Sun, M.; Wang, J.; Zhang, X. A study on the rules of ligands in highly efficient Ru–amide/AC catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2021, 11, 7347–7358. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Lv, W.; Ji, S.; Pollet, B.G.; Li, S.; Wang, R. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Adv. 2015, 5, 68655–68661. [Google Scholar] [CrossRef]
- Xie, S.; Qiao, M.; Li, H.; Wang, W.; Deng, J.-F. A novel Ru–B/SiO2 amorphous catalyst used in benzene-selective hydrogenation. Appl. Catal. A Gen. 1999, 176, 129–134. [Google Scholar] [CrossRef]
- Dou, R.F.; Tan, X.H.; Fan, Y.Q. Study on Ru-B/MIL-53(AlxCr1) Catalysts for Partial Hydrogenation of Benzene to Cyclohexene. Acta Chim. Sinica 2016, 74, 503–512. [Google Scholar] [CrossRef]
- Aldeghi, M.; Coley, C.W. A focus on simulation and machine learning as complementary tools for chemical space navigation. Chem. Sci. 2022, 13, 8221–8223. [Google Scholar] [CrossRef]
- Bai, G.Y.; Zhao, Z.; Dong, H.X.; Niu, L.B. A NiPdB-PEG(800) Amorphous Alloy Catalyst for the Chemoselective Hydrogenation of Electron-Deficient Aromatic Substrates. ChemCatChem 2015, 7, 2407. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.A.; Mazzieri, V.A.; Pronier, S. Ru-Sn-B/TiO2 catalysts for methyl oleate selective hydrogenation. Influence of the preparation method and the chlorine content. J. Chem. Technol. Biot. 2018, 94, 982–991. [Google Scholar] [CrossRef]
- Toba, M.; Tanaka, S.-I.; Niwa, S.-I.; Mizukami, F.; Koppány, Z.; Guczi, L.; Cheah, K.-Y.; Tang, T.-S. Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Appl. Catal. A Gen. 1999, 189, 243–250. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Liang, C. Hydrogenation of adipic acid to 1,6-hexanediol by supported bimetallic Ir-Re catalyst. Mol. Catal. 2020, 490, 110976. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Wang, H.; Mao, X.; Linkov, V.; Ji, S.; Gcilitshana, O.U.; Wang, R. Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation. J. Power Sources 2014, 268, 498–507. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, R.; Wang, H. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Phys. Chem. Chem. Phys. 2013, 16, 3593–3602. [Google Scholar] [CrossRef]
- He, G.; Qiao, M.; Li, W.; Lu, Y.; Zhao, T.; Zou, R.; Li, B.; Darr, J.A.; Hu, J.; Titirici, M.-M.; et al. S, N-Co-Doped Graphene-Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance. Adv. Sci. 2016, 4, 1600214–1600216. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Li, H.; Key, J.; Ji, S.; Wang, R. Synthesis of ultrafine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol oxidation. RSC Adv. 2014, 4, 20722–20728. [Google Scholar] [CrossRef]
- Karam, L.; Neumann, C.N. Heterogeneously Catalyzed Carboxylic Acid Hydrogenation to Alcohols. ChemCatChem 2022, 9, 789–790. [Google Scholar] [CrossRef]
- Kim, J.; Yun, M.; Song, B.; Yun, Y. Heterogeneous enantioselective hydrogenation of an unsaturated carboxylic acid over Pd supported on amine-functionalized silica. Appl. Catal. A Gen. 2022, 643, 118773. [Google Scholar] [CrossRef]
- Prats, H.; Piñero, J.J.; Viñes, F.; Bromley, S.T.; Sayós, R.; Illas, F. Assessing the usefulness of transition metal carbides for hydrogenation reactions. Chem. Commun. 2019, 55, 12797–12800. [Google Scholar] [CrossRef]
- Hayashi, K.; Kusunoki, K.; Tomimori, T.; Sato, R.; Todoroki, R.; Wadayama, T. Hydrogen peroxide generation and hydrogen oxidation reactions of vacuum-prepared Ru/Ir(111) bimetallic surfaces. Phys. Chem. Chem. Phys. 2022, 24, 14277–14283. [Google Scholar] [CrossRef]
- Lin, B.; Wu, Y.; Fang, B.; Li, C.; Ni, J.; Wang, X.; Lin, J.; Jiang, L. Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts. Chin. J. Catal. 2021, 42, 1712–1723. [Google Scholar] [CrossRef]
- Wen, J.; Wang, F.; Zhang, X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem. Soc. Rev. 2021, 50, 3211. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Conversion of AA (%) | Selectivity (%) | ||
---|---|---|---|---|
HDOL | Cyclopentane | Others | ||
No | 30 | 10 | 10 | 80 |
RuP/C | 60 | 16.6 | 40 | 43.4 |
Ru0.2Co7P20/C | 60 | 21 | 33 | 46 |
Ru0.4Co7P20/C | 68 | 33 | 20 | 47 |
Ru0.6Co7P20/C | 73 | 42 | 28.5 | 29.5 |
Ru0.8Co7P20/C | 80 | 70 | 20 | 10 |
Ru1.0Co7P20/C | 80 | 80 | 11.2 | 8.8 |
Ru1.2Co7P20/C | 80 | 80 | 9.3 | 10.7 |
Ru1.0Co3.5P20/C | 79.2 | 67.8 | 22 | 12.2 |
Ru1.0Co7P20/C | 80 | 80 | 11.2 | 8.8 |
Ru1.0Co10.5P20/C | 82.1 | 62.5 | 18.6 | 18.9 |
Ru1.0Co14P20/C | 80 | 62.5 | 19.8 | 17.7 |
Ru1.0Co17.5P20/C | 79.6 | 59 | 20 | 21 |
Ru1.0Co3.5P6.7/C | 75 | 46.6 | 30 | 23.4 |
Ru1.0Co7P13.4/C | 80 | 68.8 | 25 | 6.2 |
Ru1.0Co7P20/C | 80 | 80 | 11.2 | 8.8 |
Ru1.0Co14P26.8/C | 82 | 59.8 | 20 | 20.2 |
Ru1.0Co17.5P33.5/C | 82 | 54.9 | 25 | 20.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Wang, X.; Ji, S.; Wang, H. Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol. Materials 2022, 15, 8084. https://doi.org/10.3390/ma15228084
Gong W, Wang X, Ji S, Wang H. Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol. Materials. 2022; 15(22):8084. https://doi.org/10.3390/ma15228084
Chicago/Turabian StyleGong, Wei, Xuyun Wang, Shan Ji, and Hui Wang. 2022. "Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol" Materials 15, no. 22: 8084. https://doi.org/10.3390/ma15228084
APA StyleGong, W., Wang, X., Ji, S., & Wang, H. (2022). Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol. Materials, 15(22), 8084. https://doi.org/10.3390/ma15228084