Nitrogen-Doped Porous Carbon from Biomass with Efficient Toluene Adsorption and Superior Catalytic Performance
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Raw Materials
2.2. Materials Preparation
2.3. Materials Characterization
2.4. Catalytic Tests
2.5. Calculations
3. Results and Discussion
3.1. Catalytic Performance
3.2. Characterization of Biomass Carbon
3.3. Characterization of Catalyst
3.4. Apparent Activation Energy
3.5. Reaction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Yang, Q.; Peng, Y.; Chen, J.; Deng, L.; Wang, D.; Hong, X.; Li, J. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4. Chem. Eng. J. 2019, 366, 92–99. [Google Scholar] [CrossRef]
- Xiong, C.; Li, B.; Liu, H.; Zhao, W.; Duan, C.; Wu, H.; Ni, Y. A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. J. Mater. Chem. A 2020, 8, 10898–10908. [Google Scholar] [CrossRef]
- Lan, L.; Huang, Y.; Dan, Y.; Jiang, L. Conjugated porous polymers for gaseous toluene adsorption in humid atmosphere. React. Funct. Polym. 2020, 159, 104804. [Google Scholar] [CrossRef]
- Jia, L.; Shi, J.; Long, C.; Lian, F.; Xing, B. VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. Sci. Total Environ. 2020, 731, 139184. [Google Scholar] [CrossRef] [PubMed]
- Ranjbaran, F.; Kamio, E.; Matsuyama, H. Toluene vapor removal using an inorganic/organic double-network ion gel membrane. Sep. Sci. Technol. 2018, 53, 2840–2851. [Google Scholar] [CrossRef]
- Tan, Y.-X.; Chai, Z.-M.; Wang, B.-H.; Tian, S.; Deng, X.-X.; Bai, Z.-J.; Chen, L.; Shen, S.; Guo, J.-K.; Cai, M.-Q.; et al. Boosted Photocatalytic Oxidation of Toluene into Benzaldehyde on CdIn2S4-CdS: Synergetic Effect of Compact Heterojunction and S-Vacancy. ACS Catal. 2021, 11, 2492–2503. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, C.; Chen, X.; Song, M.; Xia, W. Effects of buffer gas on N-doped graphene in a non-thermal plasma process. Diam. Relat. Mater. 2021, 118, 108548. [Google Scholar] [CrossRef]
- Muccee, F.; Ejaz, S.; Riaz, N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch. Microbiol. 2019, 201, 1369–1383. [Google Scholar] [CrossRef]
- Du, Y.; Zou, J.; Guo, Y.; Xu, X.; Chen, H.; Su, C.; Zeng, Z.; Li, L. A novel viewpoint on the surface adsorbed oxygen and the atom doping in the catalytic oxidation of toluene over low-Pt bimetal catalysts. Appl. Catal. A Gen. 2020, 609, 117913. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, F.; Zhao, Z.; Yang, Y.; Li, Y.; Song, L.; Liu, N.; Xu, J.; Cui, L. Boosting toluene oxidation by the regulation of Pd species on UiO-66: Synergistic effect of Pd species. J. Catal. 2022, 413, 59–75. [Google Scholar] [CrossRef]
- Guo, M.; Ma, P.; Wang, J.; Xu, H.; Zheng, K.; Cheng, D.; Liu, Y.; Guo, G.; Dai, H.; Duan, E.; et al. Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angew. Chem. Int. Ed. 2022, 61, e202203827. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F.-S. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun. 2015, 51, 5936–5938. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, H.; Liu, R.; Xie, S.; Liu, Y.; Dai, H.; Huang, H.; Deng, J. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. J. Hazard. Mater. 2020, 392, 122258. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Du, Y.; Fang, R.; Duan, X.; Liu, Y.; Mao, J.; Yu, L.; Xu, X.; Zeng, Z.; Li, L. Low platinum alloy catalyst PtCo3 obtaining high catalytic activity and stability with great water and CO2 resistance for catalytic oxidation of toluene. Fuel 2021, 307, 121794. [Google Scholar] [CrossRef]
- Miao, H.; Hu, S.; Ma, K.; Sun, L.; Wu, F.; Wang, H.; Li, H. Synthesis of PtCo nanoflowers and its catalytic activity towards nitrobenzene hydrogenation. Catal. Commun. 2018, 109, 33–37. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B Environ. 2020, 281, 119447. [Google Scholar] [CrossRef]
- Yang, M.; Liu, J.; Lee, S.; Zugic, B.; Huang, J.; Allard, L.F.; Flytzani-Stephanopoulos, M. A common single-site Pt(II)-O(OH)x- species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470–3473. [Google Scholar] [CrossRef]
- Deng, J.; He, S.; Xie, S.; Yang, H.; Liu, Y.; Guo, G.; Dai, H. Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene. Environ. Sci. Technol. 2015, 49, 11089–11095. [Google Scholar] [CrossRef]
- Tan, H.; Wang, J.; Yu, S.; Zhou, K. Support Morphology-Dependent Catalytic Activity of Pd/CeO2 for Formaldehyde Oxidation. Environ. Sci. Technol. 2015, 49, 8675–8682. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Z.; Cheng, B.; Jiang, C. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl. Surf. Sci. 2017, 404, 426–434. [Google Scholar] [CrossRef]
- Deng, H.; Kang, S.; Wang, C.; He, H.; Zhang, C. Palladium supported on low-surface-area fiber-based materials for catalytic oxidation of volatile organic compounds. Chem. Eng. J. 2018, 348, 361–369. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, X.; Yang, P.; Qi, C. Preparation and high performance of rare earth modified Pt/MCM-41 for benzene catalytic combustion. Catal. Commun. 2017, 94, 52–55. [Google Scholar] [CrossRef]
- Qin, C.; Guo, M.; Zheng, Y.; Yu, R.; Huang, J.; Dang, X.; Yan, D. Two-component zeolite-alumina system for toluene trapping with subsequent nonthermal plasma mineralization. J. Ind. Eng. Chem. 2020, 95, 215–223. [Google Scholar] [CrossRef]
- Serafin, J.; Ouzzine, M.; Cruz, O.F.; Sreńscek-Nazzal, J.; Gómez, I.C.; Azar, F.-Z.; Mafull, C.A.R.; Hotza, D.; Rambo, C.R. Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Manag. 2021, 136, 273–282. [Google Scholar] [CrossRef]
- Zeng, L.; Thiruppathi, A.R.; van der Zalm, J.; Li, X.; Chen, A. Biomass-derived amorphous carbon with localized active graphite defects for effective electrocatalytic N2 reduction. Appl. Surf. Sci. 2022, 575, 151630. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, H.; Jiang, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials 2022, 15, 895. [Google Scholar] [CrossRef]
- Li, Q.; Lu, T.; Wang, L.; Pang, R.; Shao, J.; Liu, L.; Hu, X. Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Sep. Purif. Technol. 2021, 275, 119204. [Google Scholar] [CrossRef]
- Zhou, X.; Chu, W.; Sun, W.; Zhou, Y.; Xue, Y. Enhanced interaction of nickel clusters with pyridinic-N (B) doped graphene using DFT simulation. Comput. Theor. Chem. 2017, 1120, 8–16. [Google Scholar] [CrossRef]
- Li, C.; Nakagawa, Y.; Yabushita, M.; Nakayama, A.; Tomishige, K. Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catal. 2021, 11, 12794–12814. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, Z.; Jiang, Y.; Han, H.; Wu, T.; Wu, L.; Liu, J.; Wang, Z.; Wang, F. Platinum−Copper Bimetallic Nanoparticles Supported on TiO2 as Catalysts for Photo−thermal Catalytic Toluene Combustion. ACS Appl. Nano Mater. 2022, 5, 1845–1854. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Yang, J.-M.; Hsu, H.-C.; Lin, C.-M.; Lin, K.-Y.; Chiu, C.-H. Development and characterization of mesoporosity in eggshell ground by planetary ball milling. Microporous Mesoporous Mater. 2008, 111, 379–386. [Google Scholar] [CrossRef]
- Sun, Y.; Su, G.; He, Z.; Wei, Y.; Hu, J.; Liu, H.; Liu, G. Porous Carbons Derived from Desiliconized Rice Husk Char and Their Applications as an Adsorbent in Multivalent Ions Recycling for Spent Battery. J. Chem. 2022, 2022, 8225088. [Google Scholar] [CrossRef]
- Madhu, J.; Ramakrishnan, V.M.; Santhanam, A.; Natarajan, M.; Palanisamy, B.; Velauthapillai, D.; Chi, N.T.L.; Pugazhendhi, A. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO2 adsorption properties. Environ. Res. 2022, 214, 113949. [Google Scholar] [CrossRef]
- Liu, B.; Shi, R.; Ma, X.; Chen, R.; Zhou, K.; Xu, X.; Sheng, P.; Zeng, Z.; Li, L. High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in-situ activation for high performance of selective CO2 capture. Carbon 2021, 181, 270–279. [Google Scholar] [CrossRef]
- Wedler, C.; Span, R. Micropore Analysis of Biomass Chars by CO2 Adsorption: Comparison of Different Analysis Methods. Energy Fuels 2021, 35, 8799–8806. [Google Scholar] [CrossRef]
- Li, B.; Hu, J.; Xiong, H.; Xiao, Y. Application and Properties of Microporous Carbons Activated by ZnCl2: Adsorption Behavior and Activation Mechanism. ACS Omega 2020, 5, 9398–9407. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gao, J.; Xu, X.; Liu, B.; Yu, L.; Ren, Y.; Shi, R.; Zeng, Z.; Li, L. Adsorption of Volatile Organic Compounds (VOCs) on Oxygen-rich Porous Carbon Materials Obtained from Glucose/Potassium Oxalate. Chem. -Asian J. 2021, 16, 1118–1129. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Y.; Shi, R.; Chen, H.; Du, Y.; Liu, B.; Zeng, Z.; Yin, Z.; Li, L. Natural Honeycomb-like structure cork carbon with hierarchical Micro-Mesopores and N-containing functional groups for VOCs adsorption. Appl. Surf. Sci. 2021, 565, 150550. [Google Scholar] [CrossRef]
- Ma, X.; Li, L.; Chen, R.; Wang, C.; Zhou, K.; Li, H. Porous carbon materials based on biomass for acetone adsorption: Effect of surface chemistry and porous structure. Appl. Surf. Sci. 2018, 459, 657–664. [Google Scholar] [CrossRef]
- Meng, X.; Yang, L.; Jiang, W.; Yao, L. Adsorption of acetone and toluene by N-functionalized porous carbon derived from ZIF-8. J. Ind. Eng. Chem. 2022, 111, 137–146. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N. A facile synthesis of nitrogen-doped porous carbons from lignocellulose and protein wastes for VOCs sorption. Environ. Res. 2020, 189, 109956. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Deng, J.; Zang, S.; Yang, H.; Guo, G.; Arandiyan, H.; Dai, H. Au–Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation. J. Catal. 2014, 322, 38–48. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.; Deng, J.; Liu, Y.; Bai, B.; Wang, Y.; Li, X.; Xie, S.; Li, J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. J. Catal. 2013, 307, 327–339. [Google Scholar] [CrossRef]
- Li, Q.; Odoom-Wubah, T.; Fu, X.; Mulka, R.; Sun, D.; Zheng, Y.; Jia, L.; Huang, J.; Li, Q. Photoinduced Pt-Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Ind. Eng. Chem. Res. 2020, 59, 11453–11461. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Huang, J.; Hu, J.; Chen, Z.; Lai, Y. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chem. Eng. J. 2021, 412, 128556. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.L.; Tao, B.X.; Wang, X.H.; Deng, Y.H.; Gu, X.Y.; Li, L.J.; Xiao, W.; Li, N.B.; Luo, H.Q. CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency. Appl. Catal. B Environ. 2019, 254, 634–646. [Google Scholar] [CrossRef]
- He, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Pt–Pd bimetallic nanoparticles anchored on uniform mesoporous MnO2 sphere as an advanced nanocatalyst for highly efficient toluene oxidation. Green Energy Environ. 2022, 7, 1349–1360. [Google Scholar] [CrossRef]
- Du, X.; Li, C.; Zhang, J.; Zhao, L.; Li, S.; Lyu, Y.; Zhang, Y.; Zhu, Y.; Huang, L. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples. J. Hazard. Mater. 2020, 408, 124830. [Google Scholar] [CrossRef]
- Wang, Y.; Arandiyan, H.; Liu, Y.; Liang, Y.; Peng, Y.; Bartlett, S.; Dai, H.; Rostamnia, S.; Li, J. Template-free Scalable Synthesis of Flower-like Co3−xMnxO4 Spinel Catalysts for Toluene Oxidation. ChemCatChem 2018, 10, 3429–3434. [Google Scholar] [CrossRef]
- Shao, J.; Lin, F.; Wang, Z.; Liu, P.; Tang, H.; He, Y.; Cen, K. Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition. Appl. Catal. B Environ. 2020, 266, 118662. [Google Scholar] [CrossRef]
- Xu, W.; Wang, N.; Chen, Y.; Chen, J.; Xu, X.; Yu, L.; Chen, L.; Wu, J.; Fu, M.; Zhu, A.; et al. In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded γ-Al2O3. Catal. Commun. 2016, 84, 61–66. [Google Scholar] [CrossRef]
- Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde. ACS Catal. 2018, 8, 3435–3446. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, J.; Wang, Y.; Kong, F.; Zhou, R. Synergistic effect in bimetal Cr-Pt/ZSM-5 catalysts with high activity for CVOCs low-temperature removal. J. Environ. Chem. Eng. 2022, 10, 107629. [Google Scholar] [CrossRef]
- Yao, S.; Fang, W.; Wang, B.; Zeng, Y.; Chen, L.; Yan, X.; Bai, G.; Li, Y. Rh1Cu3/ZSM-5 as an Efficient Bifunctional Catalyst/Adsorbent for VOCs Abatement. Catal. Lett. 2021, 152, 771–780. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Ji, J.; Wu, Y.; Cai, Y.; Yao, X.; Gu, X.; Xiong, Y.; Wan, H.; Dong, L.; et al. Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation. Appl. Surf. Sci. 2022, 571, 151200. [Google Scholar] [CrossRef]
- Niftaliyeva, A.; Karaduman, A.; Kalwar, N.H.; Avci, A.; Pehlivan, E. Synthesis of novel metal/bimetal nanoparticle-modified ZSM-5 zeolite nanocomposite catalysts and application on toluene methylation. Res. Chem. Intermed. 2021, 48, 145–165. [Google Scholar] [CrossRef]
- Zhang, W.; Descorme, C.; Valverde, J.L.; Giroir-Fendler, A. Cu-Co mixed oxide catalysts for the total oxidation of toluene and propane. Catal. Today 2022, 384–386, 238–245. [Google Scholar] [CrossRef]
Samples | SBET m2 g−1 | Vtotal cm3 g−1 | Vmic cm3 g−1 | Vmes cm3 g−1 | Micropore Percentage % | Average Pore Width nm | C at.% | O at.% | N at.% |
---|---|---|---|---|---|---|---|---|---|
Cba | 1029 | 0.787 | 0.365 | 0.422 | 46.38 | 3.058 | 88.34 | 4.26 | 7.40 |
Csu | 960 | 0.773 | 0.377 | 0.396 | 48.77 | 3.211 | 87.43 | 4.14 | 8.43 |
Samples | SBET m2 g−1 | Vtotal cm3 g−1 | Pt | Co | O |
---|---|---|---|---|---|
PtCo3-ba | 68 | 0.147 | 1.847 | 4.208 | 4.562 |
PtCo3-su | 74 | 0.176 | 1.841 | 4.215 | 4.314 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zou, J.; Xu, X.; Li, Z.; Zeng, Z.; Li, L. Nitrogen-Doped Porous Carbon from Biomass with Efficient Toluene Adsorption and Superior Catalytic Performance. Materials 2022, 15, 8115. https://doi.org/10.3390/ma15228115
Zhang J, Zou J, Xu X, Li Z, Zeng Z, Li L. Nitrogen-Doped Porous Carbon from Biomass with Efficient Toluene Adsorption and Superior Catalytic Performance. Materials. 2022; 15(22):8115. https://doi.org/10.3390/ma15228115
Chicago/Turabian StyleZhang, Jing, Jianwu Zou, Xiang Xu, Zhuang Li, Zheng Zeng, and Liqing Li. 2022. "Nitrogen-Doped Porous Carbon from Biomass with Efficient Toluene Adsorption and Superior Catalytic Performance" Materials 15, no. 22: 8115. https://doi.org/10.3390/ma15228115
APA StyleZhang, J., Zou, J., Xu, X., Li, Z., Zeng, Z., & Li, L. (2022). Nitrogen-Doped Porous Carbon from Biomass with Efficient Toluene Adsorption and Superior Catalytic Performance. Materials, 15(22), 8115. https://doi.org/10.3390/ma15228115