Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Production and Analyses
2.2.1. Single and Double Layers
2.2.2. Three-Dimensional Specimens
3. Results and Discussion
3.1. Single and Double Layers
3.1.1. Top and Cross-Sectional Surface Morphology
3.1.2. Surface Roughness
3.1.3. Layer Homogeneity
3.2. Three-Dimensional Parts
3.2.1. Microstructural Analysis
3.2.2. Surface Quality
3.2.3. Chemical Composition
3.2.4. Porosity
3.2.5. Mechanical Properties
3.2.6. Fractography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavar, V.; Kattire, P.; Patil, V.; Khot, S.; Gujar, K.; Singh, R. A review on powder bed fusion technology of metal additive manufacturing. In Additive Manufacturing Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 251–261. [Google Scholar]
- Sargent, J.F., Jr.; Schwartz, R.X. 3D Printing: Overview, Impacts, and the Federal Role; Defense Technical Information Center: Fort Belvoir, VA, USA, 2019; Volume 15, pp. 1–15. [Google Scholar]
- ASTM F2792-12a; Rapid Manufacturing Association. ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–3.
- Frazier, W. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2017, 23, 1917–1928. [Google Scholar] [CrossRef]
- Donachie, J.M.J. Titanium—A Technical Guide, 2nd ed.; ASM International: Novelty, OH, USA, 2012; pp. 102–109. [Google Scholar]
- Miya, H.; Du Preez, W.B.; Monaheng, L. High cycle fatigue performance of TI6AL4V(ELI) specimens produced with inherent laser powder bed fusion surface roughness. S. Afr. J. Ind. Eng. 2021, 32, 248–257. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Du Preez, W.B. Towards Qualification of Additively Manufactured Ti6Al4V (ELI) Medical Implants. JOM 2019, 71, 655–661. [Google Scholar] [CrossRef]
- Thejane, K.; Chikosha, S.; Du Preez, W.B. Characterisation and Monitoring of TI6AL4V (Eli) Powder Used In Different Selective Laser Melting Systems. S. Afr. J. Ind. Eng. 2017, 28, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Simonelli, M.; Aboulkhair, N.T.; Cohen, P.; Murray, J.W.; Clare, A.T.; Tuck, C.; Hague, R.J.M. A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks. Mater. Charact. 2018, 143, 118–126. [Google Scholar] [CrossRef]
- Polozov, I.; Sufiiarov, V.; Popovich, A. Investigation of Ti-6Al-4V alloy in situ manufactured using selective laser melting from elemental powder mixture. Solid State Phenom. 2020, 299, 646–651. [Google Scholar] [CrossRef]
- Dong, Y.P.; Li, Y.L.; Zhou, S.Y.; Zhou, Y.H.; Dargusch, M.S.; Peng, H.X.; Yan, H. Cost-affordable Ti-6Al-4V for additive manufacturing: Powder modification, compositional modulation and laser in-situ alloying. Addit. Manuf. 2021, 37, 101699. [Google Scholar] [CrossRef]
- Bolzoni, L.; Esteban, P.G.; Ruiz-Navas, E.M.; Gordo, E. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J. Mech. Behav. Biomed. Mater. 2012, 15, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Hierarchical design principles of selective laser melting for high quality metallic objects. Addit. Manuf. 2015, 7, 45–56. [Google Scholar] [CrossRef]
- Ramosena, L.A.; Parker, B.S.; Dzogbewu, T.C.; Du Preez, W.B.; Blaine, D.C. Optimum Process Parameters For DMLS In-Situ Alloying of A Ti-10(60AL40V) powder blend. Design and Additive Manufacturing of Titanium Parts pre-conference seminar. In Proceedings of the 20th RAPDASA Annual International Conference, Bloemfontein, South Africa, 5 November 2019; pp. 78–93. [Google Scholar]
- ASTM F2924-14; Rapid Manfacturing Association. ASTM International: West Conshohocken, PA, USA, 2014; pp. 1–4.
- Krakhmalev, P.; Yadroitsev, I.; Yadroitsava, I.; De Smidt, O. Functionalization of biomedical Ti6Al4V via in situ alloying by Cu during laser powder bed fusion manufacturing. Materials 2017, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Yadroitsava, I.; Els, J.; Booysen, G.; Yadroitsev, I. Peculiarities of single-track formation from TI6Al4V alloy at different laser power densities by selective laser melting. S. Afr. J. Ind. Eng. 2015, 26, 86–95. [Google Scholar] [CrossRef]
- Andani, M.T.; Dehghani, R.; Karamooz-Ravari, M.R.; Mirzaeifar, R.; Ni, J. Spatter formation in selective laser melting process using multi-laser technology. Mater. Des. 2017, 131, 460–469. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Bertrand, P.; Antonenkova, G.; Grigoriev, S.; Smurov, I. Use of track/layer morphology to develop functional parts by selective laser melting. J. Laser Appl. 2013, 25, 052003. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Smurov, I. Surface morphology in selective laser melting of metal powders. Phys. Procedia 2011, 12, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Majeed, A.; Ahmed, A.; Salam, A.; Sheikh, M.Z. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int. J. Light. Mater. Manuf. 2019, 2, 288–295. [Google Scholar] [CrossRef]
- Chan, C.L.; Mazumder, J.; Chen, M.M. Three-dimensional axisymmetric model for convection in laser-melted pools. Mater. Sci. Technol. 1987, 3, 306–311. [Google Scholar] [CrossRef]
- Azam, F.I.; Rani, A.M.A.; Altaf, K.; Rao, T.V.V.L.N.; Zaharin, H.A. An In-Depth Review on Direct Additive Manufacturing of Metals. IOP Conf. Ser. Mater. Sci. Eng. 2018, 328, 012005. [Google Scholar] [CrossRef]
- Ter Haar, G.M.; Becker, T.H. Selective laser melting produced Ti-6Al-4V: Post-process heat treatments to achieve superior tensile properties. Materials 2018, 11, 146. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Yang, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; Zeng, X. Formation, and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Des. 2016, 108, 308–318. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, Y.; Xu, Z.; Shi, Q. Effect of martensitic transformation on elastic modulus anisotropy of Ti-6Al-4V alloy. Mater. Res. 2018, 21, 1–8. [Google Scholar] [CrossRef]
- Ter Haar, G.M.; Becker, T.H.; Blaine, D.C. Influence of heat treatments on the microstructure and tensile behavior of selective laser melting-produced TI-6AL-4V parts. S. Afr. J. Ind. Eng. 2016, 27, 174–183. [Google Scholar]
- Muiruri, A.M.; Maringa, M.; Du Preez, W.B.; Masu, L.M. Variation of impact toughness of as-built DMLS TI6AL4V (ELI) specimens with temperature. S. Afr. J. Ind. Eng. 2018, 29, 284–298. [Google Scholar] [CrossRef]
- Becker, T.H.; Beck, M.; Scheffer, C. Microstructure and mechanical properties of direct metal laser sintered Ti-6Al-4V. S. Afr. J. Ind. Eng. 2015, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dumontet, N.; Malard, B.; Viguier, B. Study on the Origins of Residual Stresses in Ti-6Al-4V Processed by Additive Manufacturing. In Proceedings of the 14th World Conference on Titanium, Nantes, France, 10–14 June 2019. [Google Scholar]
- Zheng, Z.; Jin, X.; Bai, Y.; Yang, Y.; Ni, C.; Lu, W.F.; Wang, H. Microstructure and anisotropic mechanical properties of selective laser melted Ti6Al4V alloy under different scanning strategies. Mater. Sci. Eng. A. 2021, 831, 142236. [Google Scholar] [CrossRef]
- Moletsane, M.G.; Krakhmalev, P.; Kazantseva, N.; Du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Tensile properties and microstructure of direct metal laser-sintered Ti6Al4V (ELI) alloy. S. Afr. J. Ind. Eng. 2016, 27, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Jeon, T.J.; Hwang, T.W.; Yun, H.J.; VanTyne, C.J.; Moon, Y.H. Control of porosity in parts produced by a direct laser melting process. Appl. Sci. 2018, 8, 2573. [Google Scholar] [CrossRef] [Green Version]
- Anna, M.Z. Effect of laser energy density, internal porosity and heat treatment on mechanical behavior of biomedical Ti6Al4V alloy obtained with DMLS technology. Materials 2019, 12, 2331. [Google Scholar]
- Vrancken, B.; Thijs, L.; Kruth, J.P.; Van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2021, 541, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, Ó.; Silva, F.J.G.; Ferreira, L.P.; Atzeni, E. A review of heat treatments on improving the quality and residual stresses of the Ti–6Al–4V parts produced by additive manufacturing. Metals 2020, 10, 1006. [Google Scholar] [CrossRef]
- Hartunian, P.; Eshraghi, M. Effect of build orientation on the microstructure and mechanical properties of selective laser-melted Ti-6Al-4V Alloy. J. Manuf. Mater. Process. 2018, 2, 69. [Google Scholar] [CrossRef]
- Nkhasi, N.; Du Prees, W.B.; Bisset, H. Plasma Spheroidisation of Irregular Ti6Al4V Powder for Powder Bed Fusion. Metals 2021, 11, 1763. [Google Scholar] [CrossRef]
- Muñiz-lerma, J.A.; Nommeots-nomm, A.; Waters, K.E.; Brochu, M. A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg. Materials 2018, 11, 2386. [Google Scholar] [CrossRef] [PubMed]
Powder Material | Ti | Al | V | Fe | O | N |
---|---|---|---|---|---|---|
CP Ti | 99.3 | 0.1 | 0.1 | 0.12 | 0.17 | 0.31 |
Al–V MA | 0.1 | 54.8 | 43.4 | 0.64 | 0.18 | 0.88 |
Element | PPS 1 | PPS 2 | ASTM F2924–14 |
---|---|---|---|
Ti | 91.4 | 90.8 | Remainder |
Al | 4.73 | 5.11 | 5.5–6.75 ± 0.4 |
V | 3.53 | 3.72 | 3.5–4.5 ± 0.15 |
O | 0.19 | 0.21 | 0.2 ± 0.02 |
N | 0.00433 | 0.00619 | 0.05 ± 0.02 |
Fe | 0.07 | 0.05 | 0.3 ± 0.1 |
Property | Process Parameter Set 1 | Process Parameter Set 2 | ASTM F2924–14 |
---|---|---|---|
UTS (Mpa) | 932.3 | 942.9 | 895 |
Ys (Mpa) | 932.2 | 942.9 | 825 |
ε (%) | 12.9 | 17 | 10 |
Area reduction (%) | 30.6 | 35.9 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramosena, L.A.; Dzogbewu, T.C.; du Preez, W. Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend. Materials 2022, 15, 8193. https://doi.org/10.3390/ma15228193
Ramosena LA, Dzogbewu TC, du Preez W. Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend. Materials. 2022; 15(22):8193. https://doi.org/10.3390/ma15228193
Chicago/Turabian StyleRamosena, Lekhetho Ambition, Thywill Cephas Dzogbewu, and Willie du Preez. 2022. "Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend" Materials 15, no. 22: 8193. https://doi.org/10.3390/ma15228193
APA StyleRamosena, L. A., Dzogbewu, T. C., & du Preez, W. (2022). Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend. Materials, 15(22), 8193. https://doi.org/10.3390/ma15228193