Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the Track. Nat. Nanotechnol. 2013, 8, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Fert, A.; Reyren, N.; Cros, V. Magnetic Skyrmions: Advances in Physics and Potential Applications. Nat. Rev. Mater. 2017, 2, 17031. [Google Scholar] [CrossRef] [Green Version]
- Finocchio, G.; Büttner, F.; Tomasello, R.; Carpentieri, M.; Kläui, M. Magnetic Skyrmions: From Fundamental to Applications. J. Phys. D. Appl. Phys. 2016, 49, 423001. [Google Scholar] [CrossRef]
- Lancaster, T. Skyrmions in Magnetic Materials; Springer: Berlin/Heidelberg, Germany, 2019; Volume 60, ISBN 9783319246499. [Google Scholar]
- Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B. Chiral Paramagnetic Skyrmion-like Phase in MnSi. Phys. Rev. Lett. 2009, 102, 197202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion Lattice in a Chiral Magnet. Science 2009, 323, 915. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, A.N.; Yablonskii, D.A. Thermodynamically Stable “Vortices” in Magnetically Ordered Crystals. The Mixed State of Magnets. Zh. Eksp. Teor. Fiz. 1989, 95, 178. [Google Scholar]
- Münzer, W.; Neubauer, A.; Adams, T.; Mühlbauer, S.; Franz, C.; Jonietz, F.; Georgii, R.; Böni, P.; Pedersen, B.; Schmidt, M.; et al. Skyrmion Lattice in the Doped Semiconductor Fe1−xCoxSi. Phys. Rev. B 2010, 81, 41203. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W.Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near Room-Temperature Formation of a Skyrmion Crystal in Thin-Films of the Helimagnet FeGe. Nat. Mater. 2011, 10, 106–109. [Google Scholar] [CrossRef]
- Shibata, K.; Yu, X.Z.; Hara, T.; Morikawa, D.; Kanazawa, N.; Kimoto, K.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Towards Control of the Size and Helicity of Skyrmions in Helimagnetic Alloys by Spin-Orbit Coupling. Nat. Nanotechnol. 2013, 8, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Kezsmarki, I.; Bordacs, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.; Rønnow, H.M.; Dewhurst, C.D.; Mochizuki, M.; Yanai, K.; et al. Neel-Type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV4S8. Nat. Mater. 2015, 14, 1116–1122. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Mascaraque, A.; N’Diaye, A.T.; Schmid, A.K. Room Temperature Skyrmion Ground State Stabilized through Interlayer Exchange Coupling. App. Phys. Lett. 2015, 106, 242404. [Google Scholar] [CrossRef]
- Sun, L.; Cao, R.X.; Miao, B.F.; Feng, Z.; You, B.; Wu, D.; Zhang, W.; Hu, A.; Ding, H.F. Creating an Artificial Two-Dimensional Skyrmion Crystal by Nanopatterning. Phys. Rev. Lett. 2013, 110, 167201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.J.; Upadhyaya, P.; Zhang, W.; Yu, G.Q.; Jungfleisch, M.B.; Fradin, F.Y.; Pearson, J.E.; Tserkovnyak, Y.; Wang, K.L.; Heinonen, O. Blowing Magnetic Skyrmion Bubbles. Science 2015, 349, 283–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.; Litzius, K.; Kruger, B.; Im, M.Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.M.; Weigand, M.; et al. Observation of Room-Temperature Magnetic Skyrmions and Their Current-Driven Dynamics in Ultrathin Metallic Ferromagnets. Nat. Mater. 2016, 15, 501–507. [Google Scholar] [CrossRef]
- Yu, G.Q.; Upadhyaya, P.; Li, X.; Li, W.; Kim, S.K.; Fan, Y.; Wong, K.L.; Tserkovnyak, Y.; Amiri, P.K.; Wang, K.L. Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. Nano. Lett. 2016, 16, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Boulle, O.; Vogel, J.; Yang, H.; Pizzini, S.; de Chaves, D.S.; Locatelli, A.; Mentes, T.O.; Sala, A.; Buda-Prejbeanu, L.D.; Klein, O.; et al. Room-Temperature Chiral Magnetic Skyrmions in Ultrathin Magnetic Nanostructures. Nat. Nanotechnol. 2016, 11, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guang, Y.; Bykova, I.; Liu, Y.; Yu, G.; Goering, E.; Weigand, M.; Gräfe, J.; Kim, S.K.; Zhang, J.; Zhang, H.; et al. Creating Zero-Field Skyrmions in Exchange-Biased Multilayers through X-Ray Illumination. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Bykova, I.; Zhang, S.; Yu, G.; Tomasello, R.; Carpentieri, M.; Liu, Y.; Guang, Y.; Gräfe, J.; Weigand, M.; et al. Anatomy of Skyrmionic Textures in Magnetic Multilayers. Adv. Mater. 2019, 31, 1807683. [Google Scholar] [CrossRef] [Green Version]
- Cao, A.; Chen, R.; Wang, X.; Zhang, X.; Lu, S.; Yan, S.; Koopmans, B.; Zhao, W. Enhanced Interfacial Dzyaloshinskii—Moriya Interactions in Annealed Pt/Co/MgO Structures. Nanotechnology 2020, 31, 155705. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Yu, D.; Shao, Z.; Liu, Y.; Wu, H.; Nan, P.; Zhu, Z.; Wu, C.; Guo, T.; Chen, P.; et al. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Adv. Mater. 2021, 33, 2006924. [Google Scholar] [CrossRef]
- Moreau-Luchaire, C.; Mouta, S.C.; Reyren, N.; Sampaio, J.; Vaz, C.A.; Horne, N.V.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; et al. Additive Interfacial Chiral Interaction in Multilayers for Stabilization of Small Individual Skyrmions at Room Temperature. Nat. Nanotechnol. 2016, 11, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.; Bloemen, P.J.H.; Den Broeder, F.J.A.; De Vries, J.J. Magnetic Anisotropy in Metallic Multilayers. Rep. Prog. Phys. 1996, 59, 1409–1458. [Google Scholar] [CrossRef]
- Heide, M.; Bihlmayer, G.; Blügel, S. Dzyaloshinskii-Moriya Interaction Accounting for the Orientation of Magnetic Domains in Ultrathin Films: Fe/W(110). Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 140403. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, N.S.; Bogdanov, A.N.; Schäfer, R.; Röler, U.K. Chiral Skyrmions in Thin Magnetic Films: New Objects for Magnetic Storage Technologies? J. Phys. D Appl. Phys. 2011, 44, 392001. [Google Scholar] [CrossRef] [Green Version]
- Rohart, S.; Thiaville, A. Skyrmion Confinement in Ultrathin Film Nanostructures in the Presence of Dzyaloshinskii-Moriya Interaction. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 184422. [Google Scholar] [CrossRef] [Green Version]
- Leonov, A.O.; Monchesky, T.L.; Romming, N.; Kubetzka, A.; Bogdanov, A.N.; Wiesendanger, R. The Properties of Isolated Chiral Skyrmions in Thin Magnetic Films. New J. Phys. 2016, 18, 065003. [Google Scholar] [CrossRef]
- Soumyanarayanan, A.; Raju, M.; Oyarce, A.L.G.; Tan, A.K.C.; Im, M.Y.; Petrovic, A.P.; Ho, P.; Khoo, K.H.; Tran, M.; Gan, C.K.; et al. Tunable Room-Temperature Magnetic Skyrmions in Ir/Fe/Co/Pt Multilayers. Nat. Mater. 2017, 16, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Boulle, O.; Cros, V.; Fert, A.; Chshiev, M. Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Akanda, M.R.K.; Park, I.J.; Lake, R.K. Interfacial Dzyaloshinskii-Moriya Interaction of Antiferromagnetic Materials. Phys. Rev. B 2020, 102, 224414. [Google Scholar] [CrossRef]
- Srivastava, T.; Schott, M.; Juge, R.; Křižáková, V.; Belmeguenai, M.; Roussigné, Y.; Bernand-Mantel, A.; Ranno, L.; Pizzini, S.; Chérif, S.M.; et al. Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. Nano Lett. 2018, 18, 4871–4877. [Google Scholar] [CrossRef]
- Ma, X.; Yu, G.; Razavi, S.A.; Sasaki, S.S.; Li, X.; Hao, K.; Tolbert, S.H.; Wang, K.L.; Li, X. Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface. Phys. Rev. Lett. 2017, 119, 027202. [Google Scholar] [CrossRef]
- Yang, Q.; Cheng, Y.; Li, Y.; Zhou, Z.; Liang, J.; Zhao, X.; Hu, Z.; Peng, R.; Yang, H.; Liu, M. Voltage Control of Skyrmion Bubbles for Topological Flexible Spintronic Devices. Adv. Electron. Mater. 2020, 6, 2000246. [Google Scholar] [CrossRef]
- Guang, Y.; Peng, Y.; Yan, Z.; Liu, Y.; Zhang, J.; Zeng, X.; Zhang, S.; Zhang, S.; Burn, D.M.; Jaouen, N.; et al. Electron Beam Lithography of Magnetic Skyrmions. Adv. Mater. 2020, 32, 2003003. [Google Scholar] [CrossRef] [PubMed]
- Olleros-Rodríguez, P.; Guerrero, R.; Camarero, J.; Chubykalo-Fesenko, O.; Perna, P. Intrinsic Mixed Bloch-Néel Character and Chirality of Skyrmions in Asymmetric Epitaxial Trilayers. ACS Appl. Mater. Interfaces 2020, 12, 25419–25427. [Google Scholar] [CrossRef] [PubMed]
- Hrabec, A.; Porter, N.A.; Wells, A.; Benitez, M.J.; Burnell, G.; McVitie, S.; McGrouther, D.; Moore, T.A.; Marrows, C.H. Measuring and Tailoring the Dzyaloshinskii-Moriya Interaction in Perpendicularly Magnetized Thin Films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 020402. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Peng, L.; Zhu, Z.; Li, G.; Cai, J.; Li, J.; Wei, H.; Gu, L.; Wang, S.; Zhao, T.; et al. Realization of Zero-Field Skyrmions with High-Density via Electromagnetic Manipulation in Pt/Co/Ta Multilayers. Appl. Phys. Lett. 2017, 111, 202403. [Google Scholar] [CrossRef]
- Peng, L.C.; Zhang, Y.; He, M.; Ding, B.; Wang, W.H.; Tian, H.F.; Li, J.Q.; Wang, S.G.; Cai, J.W.; Wu, G.H.; et al. Generation of High-Density Biskyrmions by Electric Current. npj Quantum Mater. 2017, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous Atomic-Scale Magnetic Skyrmion Lattice in Two Dimensions. Nat. Phys. 2011, 7, 713–718. [Google Scholar] [CrossRef]
- Von Bergmann, K.; Menzel, M.; Kubetzka, A.; Wiesendanger, R. Influence of the Local Atom Configuration on a Hexagonal Skyrmion Lattice. Nano Lett. 2015, 15, 3280–3285. [Google Scholar] [CrossRef]
- Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J.E.; Wolter, B.; von Bergmann, K.; Kubetzka, A.; Wiesendanger, N.R.; Romming, C. Hanneken, Writing and Deleting Single Magnetic Skyrmions. Science 2013, 341, 636–639. [Google Scholar] [CrossRef] [Green Version]
- Hrabec, A.; Sampaio, J.; Belmeguenai, M.; Gross, I.; Weil, R.; Chérif, S.M.; Stashkevich, A.; Jacques, V.; Thiaville, A.; Rohart, S. Current-Induced Skyrmion Generation and Dynamics in Symmetric Bilayers. Nat. Commun. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The Design and Verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Pollard, S.D.; Garlow, J.A.; Yu, J.; Wang, Z.; Zhu, Y.; Yang, H. Observation of Stable Néel Skyrmions in Cobalt/palladium Multilayers with Lorentz Transmission Electron Microscopy. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Yu, J.; Yoon, J.; Qiu, X.; Yang, H. Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 047201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmeguenai, M.; Roussigné, Y.; Chérif, S.M.; Stashkevich, A.; Petrisor, T.; Nasui, M.; Gabor, M.S. Influence of the Capping Layer Material on the Interfacial Dzyaloshinskii-Moriya Interaction in Pt/Co/capping Layer Structures Probed by Brillouin Light Scattering. J. Phys. D Appl. Phys. 2019, 52, 125002. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.; Vernier, N.; Zhang, X.; Sall, M.; Xing, T.; Diez, L.H.; Hepburn, C.; Wang, L.; Durin, G.; et al. Enhancing Domain Wall Velocity through Interface Intermixing in W-CoFeB-MgO Films with Perpendicular Anisotropy. Appl. Phys. Lett. 2019, 115, 122404. [Google Scholar] [CrossRef]
- Diez, L.H.; Voto, M.; Casiraghi, A.; Belmeguenai, M.; Roussigné, Y.; Durin, G.; Lamperti, A.; Mantovan, R.; Sluka, V.; Jeudy, V.; et al. Enhancement of the Dzyaloshinskii-Moriya Interaction and Domain Wall Velocity through Interface Intermixing in Ta/CoFeB/MgO. Phys. Rev. B 2019, 99, 054431. [Google Scholar] [CrossRef] [Green Version]
- Wells, A.W.J.; Shepley, P.M.; Marrows, C.H.; Moore, T.A. Effect of Interfacial Intermixing on the Dzyaloshinskii-Moriya Interaction in Pt/Co/Pt. Phys. Rev. B 2017, 95, 054428. [Google Scholar] [CrossRef] [Green Version]
- Diez, L.H.; Liu, Y.; Gilbert, D.; Belmeguenai, M.; Vogel, J.; Pizzini, S.; Lamperti, A.; Mohammedi, J.; Laborieux, A.; Diez, L.H.; et al. Non-Volatile Ionic Modification of the Dzyaloshinskii Moriya Interaction. Phys. Rev. Appl. 2019, 12, 034005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Xu, T.; Gao, Y.; Hu, C.; Cai, J.; Zhang, Y. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials 2022, 15, 8272. https://doi.org/10.3390/ma15228272
He M, Xu T, Gao Y, Hu C, Cai J, Zhang Y. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials. 2022; 15(22):8272. https://doi.org/10.3390/ma15228272
Chicago/Turabian StyleHe, Min, Tiankuo Xu, Yang Gao, Chaoqun Hu, Jianwang Cai, and Ying Zhang. 2022. "Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature" Materials 15, no. 22: 8272. https://doi.org/10.3390/ma15228272
APA StyleHe, M., Xu, T., Gao, Y., Hu, C., Cai, J., & Zhang, Y. (2022). Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials, 15(22), 8272. https://doi.org/10.3390/ma15228272