Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sublimates of Titanium Fluorides
3.2. Determination of the Optimal Conditions for the Pyrohydrolysis of Titanium Fluorides
3.3. Purification of Titanium Dioxide from Impurities and Obtaining Rutile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IMOB JSC | Institute of Metallurgy and Ore Beneficiation Joint Stock Company |
UKTMP JSC | Ust-Kamenogorsk Titanium and Magnesium Plant Joint-Stock Company |
XRD | X-ray phase analysis |
Solid to liquid ratio (S:L) | the ratio of the weight of the solid phase (in grams) to the volume of the liquid phase (in mL) |
References
- World Titanium Market: Trends and Prospects. Available online: http://www.ereport.ru/articles/commod/titanium.htm (accessed on 12 May 2022).
- Qiongsha, L.; Phil, B.; Hanyue, Z. Titanium sponge production technology in China. In Proceedings of the 13th World Conference on Titanium, San Diego, CA, USA, 16–20 August 2015. [Google Scholar] [CrossRef]
- Feng, G.; Zuoren, N.; Danpin, Y.; Boxue, S.; Yu, L.; Xianzheng, G.; Zhihong, W. Environmental impacts analysis of titanium sponge production using Kroll process in China. J. Clean. Prod. 2018, 174, 771–779. [Google Scholar] [CrossRef]
- Chervony, I.F.; Listopad, D.A.; Ivashchenko, V.I.; Sorokina, L.V. On the physical and chemical laws of the formation of titanium sponge. Collection of research papers Donetsk National Technical University. Metallurgy 2008, 10, 37–46. [Google Scholar]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Janus, M.; Choina, J.; Morawski, A.W. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity. J. Hazard. Mater. 2009, 166, 1–5. [Google Scholar] [CrossRef]
- Heidenau, F.; Mittelmeier, W.; Detsch, R.; Haenle, M.; Stenzel, F.; Ziegler, G.; Gollwitzer, H. A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med. 2005, 16, 883–888. [Google Scholar] [CrossRef] [PubMed]
- MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: Recent advances and novel applications. J. Hazard. Mater. 2017, 341, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.Q.; Posadas, A.; Seo, H.; Hoang, S.; McDaniel, M.D.; Utess, D.; Triyoso, D.H.; Mullins, C.B.; Demkov, A.A.; Ekerdt, J.G. Atomic layer deposition of photoactive CoO/SrTiO3 and CoO/TiO2 on Si (001) for visible light driven photoelectrochemical water oxidation. J. Appl. Phys. 2013, 114, 084901. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 1977, 99, 303–304. [Google Scholar] [CrossRef]
- Korina, E.; Stoilova, O.; Manolova, N.; Rashkov, I. Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 2018, 6, 2075–2084. [Google Scholar] [CrossRef]
- Sraw, A.; Kaur, T.; Pandey, Y.; Sobti, A.; Wanchoo, R.K.; Toor, A.P. Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. J. Environ. Chem. Eng. 2018, 6, 7035–7043. [Google Scholar] [CrossRef]
- Livraghi, S.; Elghniji, K.; Czoska, A.M.; Paganini, M.C.; Gia-mello, E.; Ksibi, M. Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of photoactive species and yheir role in determing the photocatalytic activity under visible light. J. Photochem. Photobiol. A Chem. 2009, 205, 93–97. [Google Scholar] [CrossRef]
- Wu, G.; Wen, J.; Nigro, S.; Chen, A. One-step synthesis of N- and F-codoped mesoporous TiO2 photocatalyst with high visible light activity. Nanotechnology 2010, 21, 085701. [Google Scholar] [CrossRef]
- Weintraub, G. Process of Obtaining Titanic Oxid. U.S. Patent 1014793A, 16 January 1912. [Google Scholar]
- Blumenfeld, J. Titanium Compound. U.S. Patent 1504669A, 12 August 1924. [Google Scholar]
- Weizmann, C.; Blumenfeld, J. Improvements Relating to the Treatment of Solutions for the Separation of Suspended Matter. UK Patent 228814A, 3 February 1925. [Google Scholar]
- Werner, M. Production of Titanium Dioxide. U.S. Patent 1758528A, 13 May 1930. [Google Scholar]
- Belenkiy, E.F.; Riskin, I.V. Chemistry and Technology of Pigments; Goshimizdat: Leningrad, Russia, 1960; p. 756. [Google Scholar]
- Jelks, B. Titanium: Its Occurrence, Chemistry and Technology, 2nd ed.; Ronald Press: New York, NY, USA, 1966; p. 691. [Google Scholar]
- Svendsen, S.S. Manufacture of Titanium Compounds. U.S. Patent 2042434, 6 June 1931. [Google Scholar]
- Svendsen, S.S. Treatment of Titanium-Bearing Materials. U.S. Patent 2042435, 27 September 1934. [Google Scholar]
- Medkov, M.A.; Krysenko, G.F.; Epov, D.G. Ammonium hydrodifluoride is a promising reagent for the complex processing of raw materials. Bull. Far East. Branch Russ. Acad. Sci. 2011, 5, 60–65. [Google Scholar]
- Rakov, E.G. Ammonium Fluorides; Itogi Nauki i Tekhniki; Ser. Inorganic Chemistry; All-Russian Institute of Scientific and Technical Information: Moscow, Russia, 1988; Volume 15, 154p. [Google Scholar]
- Ultarakova, A.A.; Yessengaziyev, A.M.; Kuldeyev, E.I.; Kassymzhanov, K.K.; Uldakhanov, O.K. Processing of titanium production sludge with the extraction of titanium dioxide. Metalurgija 2021, 3–4, 411–414. [Google Scholar]
- Yessengaziyev, A.M.; Ultarakova, A.A.; Burns, P.C. Fluoroammonium method for processing of cake from leaching of titanium-magnesium production sludge. Complex Use Miner. Resour. 2022, 320, 67–74. [Google Scholar] [CrossRef]
- Dmitriev, A.N.; Smorokov, A.A.; Kantaev, A.S. Fluoroammonium method of titanium slag processing. Proceedings of higher educational institutions. Ferr. Metall. 2021, 3, 178–183. [Google Scholar] [CrossRef]
- Andreev, A.A.; Dyachenko, A.N. Method for Processing Titanium-Containing Raw Materials. Patent RF 2365647, 27 August 2009. [Google Scholar]
- Andreev, A.A. Development of Fluoride Technology for the Production of Pigment Titanium Dioxide from Ilmenite; Abstract of the Dissertation of the Candidate of Technical Sciences; Tomsk Polytechnic University (TPU): Tomsk, Russia, 2008; p. 22. [Google Scholar]
- Gordienko, P.S. Method for Producing Titanium Dioxide Using an Aqueous Solution of Fluoride. RF Patent RU 2007132063/15, 20 June 2010. [Google Scholar]
- Gerasimova, L.G.; Nikolaeva, A.I.; Sklokin, L.I.; Shestakov, S.V.; Polyakov, E.G.; Zots, N.V. Method for Processing Fluorotitanium-Containing Solutions after Opening Loparite and other Titanium-Containing Concentrates to Obtain Titanium Dioxide. RF Patent RU 2175989 C1, 20 November 2001. [Google Scholar]
- Alekseiko, L.N.; Goncharuk, V.K.; Maslennikova, I.G. Method for Producing Titanium Dioxide. RF Patent RU 2539582 C1, 20 January 2015. [Google Scholar]
- Ultarakova, A.A.; Karshigina, Z.B.; Lokhova, N.G.; Yessengaziyev, A.M.; Kassymzhanov, K.K.; Tolegenova, S.S. Extraction of amorphous silica from waste dust of electrowinning of ilmenite concentrate. Metalurgija 2022, 61, 377–380. [Google Scholar]
- Ultarakova, A.A.; Karshyga, Z.B.; Lokhova, N.G.; Naimanbaev, M.A.; Yessengaziyev, A.M.; Burns, P. Methods of silica removal from pyrometallurgical processing wastes of ilmenite concentrate. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ = Complex Use Miner. Resour. 2022, 322, 79–88. [Google Scholar] [CrossRef]
- Karshyga, Z.; Ultarakova, A.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K. Processing of Titanium-Magnesium Production Waste. J. Ecol. Eng. 2022, 23, 215–225. [Google Scholar] [CrossRef]
- Laptash, N.M.; Maslennikova, I.G. Fluoride Processing of Titanium-Containing Minerals. Adv. Mater. Phys. Chem. 2012, 2, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Karshyga, Z.B.; Ultarakova, A.A.; Lokhova, N.G.; Yessengaziyev, A.M.; Kuldeyev, E.I.; Kassymzhanov, K.K. Study of fluoroammonium processing of reduction smelting dusts from ilmenite concentrate. Metalurgija 2023, 62, 145–148. [Google Scholar]
- Rakov, E.G.; Teslenko, V.V. Pyrohydrolysis of Inorganic Fluorides; Energoatomizdat: Moscow, Russia, 1987; 152p. [Google Scholar]
- Watanabe, A.; Nishimura, Y.; Watanabe, N. Obtaining Method of Titanium Oxide from Compound Containing Titanium and Fluorine. Patent JPS57183325A, 11 November 1982. [Google Scholar]
- Chen, D.M.; Jiang, Z.Y.; Geng, J.Q.; Zhu, J.H.; Yang, D. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6. J. Nanopart. Res. 2009, 11, 303–313. [Google Scholar] [CrossRef]
- Interstate Standard GOST 9808-84; Pigmentary Titanium Dioxide. Specifications. Decree of the State Standard of the USSR of 19 December 1984, No 4693. Interstate Standard: Moscow, Russia, 1984.
Ti | Fe | Si | Cr | Al | F | O |
---|---|---|---|---|---|---|
58.99 | 0.56 | 0.005 | 0.095 | 0.140 | 20.377 | 19.76 |
TiO2 | Fe2O3 | Cr2O3 | Al2O3 | SiO2 | F |
---|---|---|---|---|---|
98.5 | 0.807 | 0.183 | 0.266 | 0.012 | 0.447 |
Reaction (11) | Reaction (12) | ||
---|---|---|---|
Ke, s−1 | Ea, kJ/mol | Ke, s−1 | Ea, kJ/mol |
16.1 × 10−5 | 14.7 | 12.9 × 10−5 | 15.3 |
TiO2 | SiO2 | Cr2O3 | MnO2 | Fe2O3 | F |
---|---|---|---|---|---|
99.8 | 0.0005 | 0.032 | 0.005 | 0.039 | n/d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ultarakova, A.; Karshyga, Z.; Lokhova, N.; Yessengaziyev, A.; Kassymzhanov, K.; Mukangaliyeva, A. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Materials 2022, 15, 8314. https://doi.org/10.3390/ma15238314
Ultarakova A, Karshyga Z, Lokhova N, Yessengaziyev A, Kassymzhanov K, Mukangaliyeva A. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Materials. 2022; 15(23):8314. https://doi.org/10.3390/ma15238314
Chicago/Turabian StyleUltarakova, Almagul, Zaure Karshyga, Nina Lokhova, Azamat Yessengaziyev, Kaisar Kassymzhanov, and Arailym Mukangaliyeva. 2022. "Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide" Materials 15, no. 23: 8314. https://doi.org/10.3390/ma15238314
APA StyleUltarakova, A., Karshyga, Z., Lokhova, N., Yessengaziyev, A., Kassymzhanov, K., & Mukangaliyeva, A. (2022). Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide. Materials, 15(23), 8314. https://doi.org/10.3390/ma15238314