The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire
Abstract
:1. Introduction
2. Materials and Methods
- Sample A was prepared without any nucleation layer.
- Sample B was prepared with a low-temperature (LT) nucleation layer deposited using O2 precursor as the oxygen source. The amorphous LT layer (around 30 nm thick) was deposited at 720 °C for 150 s with a 90 µmol/min TMGa flow rate and a 16 mmol/min O2 flow rate (Step 1 in Figure 1). Then, the sample temperature was raised to 1030 °C to perform high-temperature annealing of the layer (Step 2 in Figure 1), supposedly crystallizing it as suggested by X-ray diffraction measurements in Figure S1 in supplementary materials. After a 150-s-long dwell time, the temperature of the sample was decreased to the main layer growth temperature (see above) followed by the 30 min deposition (Step 3 in Figure 1).
- Sample C was prepared with a nucleation layer deposited using both precursors H2O and O2 as the oxygen sources. One LT layer was grown as it was described for Sample B. An additional LT layer was overgrown on top of the first one for 60 s using TMGa and H2O as the gallium and oxygen sources, respectively. The flow rates were 90 µmol/min for TMGa and 320 µmol/min for H2O precursors. Before the growth of the main layer, the temperature was increased to anneal the LT layers similarly as for Sample B.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, J.; Zhang, J.; Yang, L.; Qu, M.; Qi, D.; Zhang, K.H.L. Wide Bandgap Oxide Semiconductors: From Materials Physics to Optoelectronic Devices. Adv. Mater. 2021, 33, e2006230. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Asher, J.J.; Jennings, M.R.; Chikoidze, E.; Pérez-Tomás, A. Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation. Materials 2022, 15, 1164. [Google Scholar] [CrossRef] [PubMed]
- Bosi, M.; Mazzolini, P.; Seravalli, L.; Fornari, R. Ga2O3 polymorphs: Tailoring the epitaxial growth conditions. J. Mater. Chem. C 2020, 8, 10975–10992. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H., IV; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Green, A.J.; Speck, J.; Xing, G.; Moens, P.; Allerstam, F.; Gumaelius, K.; Higashiwaki, M. β-Gallium oxide power electronics. APL Mater. 2022, 10, 029201. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dong, P.; Dang, K.; Zhang, Y.; Yan, Q.; Xiang, H.; Su, J.; Liu, Z.; Si, M.; Gao, J.; et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat. Commun. 2022, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Varshney, U.; Aggarwal, N.; Gupta, G. Current advances in solar-blind photodetection technology: Using Ga2O3 and AlGaN. J. Mater. Chem. C 2022, 10, 1573–1593. [Google Scholar] [CrossRef]
- Kaur, D.; Kumar, M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Adv. Opt. Mater. 2021, 9, 2002160. [Google Scholar] [CrossRef]
- Jeon, H.M.; Leedy, K.D.; Look, D.C.; Chang, C.S.; Muller, D.A.; Badescu, S.C.; Chabak, K.D. Homoepitaxial β-Ga2O3 transparent conducting oxide with conductivity σ = 2323 S cm−1. APL Mater. 2021, 9, 101105. [Google Scholar] [CrossRef]
- Khartsev, S.; Nordell, N.; Hammar, M.; Purans, J.; Hallén, A. High-Quality Si-Doped β-Ga2O3 Films on Sapphire Fabricated by Pulsed Laser Deposition. Phys. Status Solidi Basic Res. 2021, 258, 2–6. [Google Scholar]
- Saikumar, A.K.; Nehate, S.D.; Sundaram, K.B. Review: RF Sputtered Films of Ga2O3. ECS J. Solid State Sci. Technol. 2019, 8, Q3064. [Google Scholar] [CrossRef]
- Vogt, P.; Hensling, F.; Azizie, K.; Chang, C.; Turner, D.; Park, J.; McCandless, J. Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy. APL Mater. 2021, 9, 031101. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Xia, Z.; Bajaj, S.; Brenner, M.; Rajan, S. Delta-doped β-gallium oxide field-effect transistor. Appl. Phys. Express 2017, 10, 051102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Alema, F.; Mauze, A.; Koksaldi, O.S.; Miller, R.; Osinsky, A.; Speck, J.S. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/Vs at room temperature. APL Mater. 2019, 7, 022506. [Google Scholar] [CrossRef] [Green Version]
- Alema, F.; Hertog, B.; Osinsky, A.; Mukhopadhyay, P.; Toporkov, M.; Schoenfeld, W.V. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J. Cryst. Growth 2017, 475, 77–82. [Google Scholar] [CrossRef]
- Kjapsna, A.; Dimitrocenko, L.; Tale, I.; Trukhin, A.; Ignatans, R.; Grants, R. Characterization of crystalline structure and morphology of Ga2O3 thin film grown by MOCVD technique. Key Eng. Mater. 2017, 721, 253–257. [Google Scholar] [CrossRef]
- Feng, Z.; Anhar Uddin Bhuiyan, A.F.M.; Karim, M.R.; Zhao, H. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl. Phys. Lett. 2019, 114, 250601. [Google Scholar] [CrossRef]
- Seryogin, G.; Seryogin, G.; Alema, F.; Valente, N.; Fu, H.; Steinbrunner, E.; Neal, A.T.; Osinsky, A. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Appl. Phys. Lett. 2020, 117, 262101. [Google Scholar] [CrossRef]
- Wagner, G.; Baldini, M.; Gogova, D.; Schmidbauer, M.; Schewski, R.; Albrecht, M.; Fornari, R. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys. Status Solidi Appl. Mater. Sci. 2014, 211, 27–33. [Google Scholar] [CrossRef]
- Alema, F.; Alema, F.; Zhang, Y.; Osinsky, A.; Orishchin, N.; Valente, N.; Mauze, A.; Speck, J.S. Low 10·14 cm−3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD. APL Mater. 2020, 8, 021110. [Google Scholar] [CrossRef]
- Alema, F.; Zhang, Y.; Mauze, A.; Itoh, T.; Speck, J.S.; Hertog, B.; Osinsky, A. H2O vapor assisted growth of β-Ga2O3 by MOCVD. AIP Adv. 2020, 10, 085002. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; He, K.; Hu, X.; Dravid, V.; Razeghi, M. Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing. Photonics 2021, 8, 17. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings 2021, 11, 287. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Z.; Li, Z.; Fei, Z.; Pei, Y.; Wang, G.; He, Z. Heteroepitaxy of ε-Ga2O3 thin films grown on AlN/Si(111) templates by metal–organic chemical vapor deposition. Appl. Surf. Sci. 2022, 581, 152335. [Google Scholar] [CrossRef]
- Nakagomi, S.; Kokubun, Y. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J. Cryst. Growth 2012, 349, 12–18. [Google Scholar] [CrossRef]
- Gibart, P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth. Reports Prog. Phys. 2004, 67, 667. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Zhuo, Y.; Chen, W.; Ma, X.; Pei, Y.; Wang, G. Layer-by-layer growth of ε-Ga2O3 thin film by metal–organic chemical vapor deposition. Appl. Phys. Express 2018, 11, 101101. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Z.; Tang, K.; Huang, J.; Shang, Y.; Shen, Y.; Liao, M.; Wang, L. Effect of a seed layer on microstructure and electrical properties of Ga2O3 films on variously oriented Si substrates. Vacuum 2022, 195, 110671. [Google Scholar] [CrossRef]
- Polyakov, A.; Nikolaev, V.; Stepanov, S.; Almaev, A.; Pechnikov, A.; Yakimov, E.B.; Kushnarev, B.O.; Shchemerov, I.V.; Scheglov, M.; Chernykh, A.V.; et al. Effects of sapphire substrate orientation on Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy using α-Ga2O3 buffers. J. Phys. D. Appl. Phys. 2022, 55, 495102. [Google Scholar] [CrossRef]
- Gogova, D.; Ghezellou, M.; Tran, D.Q.; Richter, S.; Papamichail, A.; Hassan, J.U.; Darakchieva, V. Epitaxial growth of β-Ga2O3 by hot-wall MOCVD. AIP Adv. 2022, 12, 055022. [Google Scholar] [CrossRef]
- Rafique, S.; Han, L.; Neal, A.T.; Mou, S.; Tadjer, M.J.; French, R.H.; Zhao, H. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 132103. [Google Scholar] [CrossRef] [Green Version]
- Åhman, J.; Svensson, G.; Albertsson, J. A Reinvestigation of β-Gallium Oxide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996, 52, 1336–1338. [Google Scholar] [CrossRef] [Green Version]
- Kranert, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman tensor elements of β-Ga2O3. Sci. Rep. 2016, 6, 35964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, S.; Rahman, S.; Hong, L.; Rojas-Ramirez, J.S.; Jin, H.; Park, K.; Droopad, R. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors. J. Appl. Phys. 2017, 122, 095302. [Google Scholar] [CrossRef]
Sample A | Sample B | Sample C | |
---|---|---|---|
Maximum peak height (roughness) Rp, nm | 178.2 | 202.9 | 367.6 |
Mean grain size, μm | 0.389 | 1.502 | 1.989 |
Rocking curve FWHM, degrees | 1.93 | 1.87 | 1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrocenko, L.; Strikis, G.; Polyakov, B.; Bikse, L.; Oras, S.; Butanovs, E. The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire. Materials 2022, 15, 8362. https://doi.org/10.3390/ma15238362
Dimitrocenko L, Strikis G, Polyakov B, Bikse L, Oras S, Butanovs E. The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire. Materials. 2022; 15(23):8362. https://doi.org/10.3390/ma15238362
Chicago/Turabian StyleDimitrocenko, Lauris, Gundars Strikis, Boris Polyakov, Liga Bikse, Sven Oras, and Edgars Butanovs. 2022. "The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire" Materials 15, no. 23: 8362. https://doi.org/10.3390/ma15238362
APA StyleDimitrocenko, L., Strikis, G., Polyakov, B., Bikse, L., Oras, S., & Butanovs, E. (2022). The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire. Materials, 15(23), 8362. https://doi.org/10.3390/ma15238362