Developed a New Radiation Shielding Absorber Composed of Waste Marble, Polyester, PbCO3, and CdO to Reduce Waste Marble Considering Environmental Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Liquid Polyester
2.1.2. Waste Marble
2.1.3. Lead Carbonate (PbCO3)
2.1.4. Cadmium Oxide (CdO)
2.2. Sample Preparation
2.3. Radiation Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, M.; Xue, X.; Yang, H.; Li, Z. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 2017, 141, 239–244. [Google Scholar] [CrossRef]
- Sayyed, M.I.; El-Mesady, I.A.; Abouhaswa, A.S.; Askin, A.; Rammah, Y.S. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 2019, 1197, 656–665. [Google Scholar] [CrossRef]
- Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690–12704. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Issa, S.A.; Tekin, H.O.; Saddeek, Y.B. Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 2018, 217, 11–22. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Chanthima, N.; Thongdang, J.; Reungsri, S.; Kothan, S.; Kaewkhao, J. Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Mater. Today: Proc. 2021, 43, 2544–2553. [Google Scholar] [CrossRef]
- Kumar, A.; Gaikwad, D.K.; Obaid, S.S.; Tekin, H.O.; Agar, O.; Sayyed, M.I. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+x)PbO-10WO3-10Na2O−10MgO–(40-x)B2O3. Prog. Nucl. Energy 2020, 119, 103047. [Google Scholar] [CrossRef]
- Sayyed, M.I.; El-Mallawany, R. Shielding properties of (100-x) TeO2-(x) MoO3 glasses. Mater. Chem. Phys. 2017, 201, 50–56. [Google Scholar] [CrossRef]
- Alsaif, N.A.M.; Alotiby, M.; Hanfi, M.Y.; Sayyed, M.I.; Mahmoud, K.A.; Alotaibi, B.M.; Alyousef, H.A.; Al-Hadeethi, Y. A comprehensive study on the optical, mechanical, and radiation shielding properties of the TeO2–Li2O–GeO2 glass system. J. Mater. Sci. Mater. Electron. 2021, 32, 15226–15241. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Yalçınkaya, Ç.; Tuyan, M. Optimization of reactive powder concrete by means of barite aggregate for neutrons and gamma rays. Constr. Build. Mater. 2018, 189, 470–477. [Google Scholar] [CrossRef]
- Issa, S.A.; Sayyed, M.; Zaid, M.; Matori, K. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results Phys. 2018, 9, 206–210. [Google Scholar] [CrossRef]
- Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2020, 52, 647–653. [Google Scholar] [CrossRef]
- Bünyamin, A. Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique. Radiat. Phys. Chem. 2021, 188, 109630. [Google Scholar]
- Oğul, H.; Polat, H.; Akman, F.; Kaçal, M.R.; Dilsiz, K.; Bulut, F.; Agar, O. Gamma and Neutron Shielding Parameters of Polyes-ter-based composites reinforced with boron and tin nanopowders. Radiat. Phys. Chem. 2022, 201, 110474. [Google Scholar] [CrossRef]
- Özkalaycı, F.; Kaçal, M.; Agar, O.; Polat, H.; Sharma, A.; Akman, F. Lead(II) chloride effects on nuclear shielding capabilities of polymer composites. J. Phys. Chem. Solids 2020, 145, 109543. [Google Scholar] [CrossRef]
- Ogul, H. Radiation attenuation properties of polymer composites mixed with tantalum carbide. Radiat. Eff. Defects Solids 2022, 177, 531–544. [Google Scholar] [CrossRef]
- Belgin, E.E. Comparison of gamma spectrometric method and XCOM method in calculating mass attenuation coefficients of reinforced polymeric composite materials. Radiat. Phys. Chem. 2022, 193, 109960. [Google Scholar] [CrossRef]
- Yonphan, S.; Chaiphaksa, W.; Kalkornsurapranee, E.; Tuljittraporn, A.; Kothan, S.; Kaewjaeng, S.; Intachai, N.; Wongdamnern, N.; Kedkaew, C.; Kim, H.; et al. Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. Radiat. Phys. Chem. 2022, 200. [Google Scholar] [CrossRef]
- Alzahrani, J.S.; Alrowaili, Z.; Eke, C.; Mahmoud, Z.M.; Mutuwong, C.; Al-Buriahi, M. Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiat. Phys. Chem. 2022, 195. [Google Scholar] [CrossRef]
- Khong, J.C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A.S.; Mi, J. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability. Sci. Rep. 2016, 6, 36998. [Google Scholar] [CrossRef] [Green Version]
- Kaewkhao, J.; Korkut, T.; Korkut, H.; Aygün, B.; Yasaka, P.; Tuscharoen, S.; Insiripong, S.; Karabulut, A. Monte Carlo Design and Experiments on the Neutron Shielding Performances of B2O3–ZnO–Bi2O3 Glass System. Glas. Phys. Chem. 2017, 43, 560–563. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Tan, Y.; Kwan, A.; Liu, F. Use of marble dust as paste replacement for recycling waste and improving du-rability and dimensional stability of mortar. Constr. Build. Mater. 2018, 166, 423–432. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, A.; Bhunia, D. Evaluation of marble slurry incorporated concrete using nondestructive methods. Mater. Today: Proc. 2017, 4, 9842–9845. [Google Scholar] [CrossRef]
- Al-Buriahi, M.; Tamam, N.; Somaily, H.; Alrowaili, Z.; Saleh, H.; Olarinoye, I.; Alwadai, N.; Mutuwong, C.; Tonguc, B. Estimation of radiation protection ability of borate glass system doped with CdO, PbO, and TeO2. Radiat. Phys. Chem. 2022, 193, 109996. [Google Scholar] [CrossRef]
- Saeed, A.; Alaqab, A.; Banoqitah, E.; Damoom, M.M.; Salah, N. Graphitic carbon-rich oil fly ash as ef-fective reinforcements to enhance the mechanical, thermal, and radiation shielding properties of high-grade epoxy polymer. Polym. Test. 2022, 115, 107739. [Google Scholar] [CrossRef]
- Pande, A.; Gairola, P.; Sambyal, P.; Gairola, S.P.; Kumar, V.; Singh, K.; Dhawan, S.K. Electromagnetic shielding behavior of polyaniline using Red Mud (industrial waste) as filler in the X—Band (8.2–12.4 GHz) frequency range. Mater. Chem. Phys. 2017, 189, 22–27. [Google Scholar] [CrossRef]
- Rammah, Y.; Olarinoye, I.; El-Agawany, F.; El-Adawy, A.; Yousef, E.S. The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceram. Int. 2020, 46, 27163–27174. [Google Scholar] [CrossRef]
- Prakash, T.; Chhipa, R.C. Opportunities for marble powder waste as an eco-friendly use in adaptive construction materials. IJEAR 2014, 1, 8–16. [Google Scholar]
- Sayyed, M.I.; Alrashedi, M.F.; Almuqrin, A.H.; Elsafi, M. Recycling and optimizing waste lab glass with Bi2O3 nano-particles to use as a transparent shield for photons. J. Mater. Res. Technol. 2022, 17, 2073–2083. [Google Scholar] [CrossRef]
- Hannachi, E.; Sayyed, M.; Slimani, Y.; Almessiere, M.; Baykal, A.; Elsafi, M. Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. J. Alloy Compd. 2021, 899, 163173. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Kothan, S.; Chaiphaksa, W.; Chanthima, N.; Rajaramakrishna, R.; Kim, H.J.; Kaewkhao, J. High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 2019, 160, 41–47. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X/PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Yasaka, P.; Pattanaboonmee, N.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 2014, 68, 4–9. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Kothan, S.; Kedkaew, C.; Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791. [Google Scholar] [CrossRef]
- Megala, R.; Kavaz, E.B. Deva Prasad Raju, Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications. Mater. Res. Bull. 2021, 142, 111383. [Google Scholar]
- Abouhaswa, A.S.; Kavaz, E. A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram. Int. 2020, 46, 16166–16177. [Google Scholar] [CrossRef]
- Mhareb, M.H.A. Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 2020, 126, 71. [Google Scholar] [CrossRef]
- Alajerami, Y.; Drabold, D.; Mhareb, M.; Cimatu, K.L.A.; Chen, G.; Kurudirek, M. Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 2020, 46, 12718–12726. [Google Scholar] [CrossRef]
Density | 1.25 g/cm3 |
---|---|
Yield modulus | 2–4 GPa |
Compressive Strength | 140 MPa |
Tensile Strength | 55 MPa |
Tensile Elongation at Break | 2% |
Name of Oxide | Composition (%) |
---|---|
CaO | 35.24 |
Fe2O3 | 0.23 |
MgO | 5.27 |
Al2O3 | 3.55 |
SiO2 | 11.5 |
SO3 | 1.78 |
K2O | 1.21 |
LOI | 41.22 |
Codes | Compositions (wt%) | Density (g/cm3) | |||
---|---|---|---|---|---|
Waste Marble | Polyester | PbCO3 | CdO | ||
Marb-1 | 50 | 25 | 25 | 0 | 2.291 |
Marb-2 | 50 | 25 | 20 | 5 | 2.298 |
Marb-3 | 50 | 25 | 17.5 | 7.5 | 2.302 |
Marb-4 | 50 | 25 | 15 | 10 | 2.306 |
Marb-5 | 50 | 25 | 12.5 | 12.5 | 2.311 |
Code | Energy (MeV) | LAC (cm−1) | Unc (Exp) | R.D (%) | |
---|---|---|---|---|---|
Phy.X | Exp | ||||
Marb-1 | 0.060 | 2.8418 | 2.7720 | 0.0011 | 2.52 |
0.662 | 0.1939 | 0.1909 | 0.0009 | 1.58 | |
1.173 | 0.1377 | 0.1412 | 0.0031 | −2.54 | |
1.333 | 0.1282 | 0.1231 | 0.0018 | 4.11 | |
Marb-2 | 0.060 | 3.0061 | 2.9509 | 0.0008 | 1.87 |
0.662 | 0.1914 | 0.1895 | 0.0024 | 0.97 | |
1.173 | 0.1372 | 0.1346 | 0.0014 | 1.97 | |
1.333 | 0.1279 | 0.1292 | 0.0007 | −0.99 | |
Marb-3 | 0.060 | 3.8407 | 3.7202 | 0.0009 | 3.24 |
0.662 | 0.1976 | 0.1949 | 0.0025 | 1.35 | |
1.173 | 0.1384 | 0.1333 | 0.0017 | 3.77 | |
1.333 | 0.1287 | 0.1262 | 0.0013 | 1.98 | |
Marb-4 | 0.060 | 3.1727 | 3.2557 | 0.0010 | −2.55 |
0.662 | 0.1889 | 0.1858 | 0.0016 | 1.65 | |
1.173 | 0.1369 | 0.1339 | 0.0008 | 2.22 | |
1.333 | 0.1277 | 0.1255 | 0.0008 | 1.75 | |
Marb-5 | 0.060 | 3.2564 | 3.1279 | 0.0014 | 4.11 |
0.662 | 0.1876 | 0.1928 | 0.0019 | −2.65 | |
1.173 | 0.1367 | 0.1359 | 0.0020 | 0.58 | |
1.333 | 0.1276 | 0.1266 | 0.0030 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayyed, M.I.; Almurayshid, M.; Almasoud, F.I.; Alyahyawi, A.R.; Yasmin, S.; Elsafi, M. Developed a New Radiation Shielding Absorber Composed of Waste Marble, Polyester, PbCO3, and CdO to Reduce Waste Marble Considering Environmental Safety. Materials 2022, 15, 8371. https://doi.org/10.3390/ma15238371
Sayyed MI, Almurayshid M, Almasoud FI, Alyahyawi AR, Yasmin S, Elsafi M. Developed a New Radiation Shielding Absorber Composed of Waste Marble, Polyester, PbCO3, and CdO to Reduce Waste Marble Considering Environmental Safety. Materials. 2022; 15(23):8371. https://doi.org/10.3390/ma15238371
Chicago/Turabian StyleSayyed, M. I., Mansour Almurayshid, Fahad I. Almasoud, Amjad R. Alyahyawi, Sabina Yasmin, and Mohamed Elsafi. 2022. "Developed a New Radiation Shielding Absorber Composed of Waste Marble, Polyester, PbCO3, and CdO to Reduce Waste Marble Considering Environmental Safety" Materials 15, no. 23: 8371. https://doi.org/10.3390/ma15238371
APA StyleSayyed, M. I., Almurayshid, M., Almasoud, F. I., Alyahyawi, A. R., Yasmin, S., & Elsafi, M. (2022). Developed a New Radiation Shielding Absorber Composed of Waste Marble, Polyester, PbCO3, and CdO to Reduce Waste Marble Considering Environmental Safety. Materials, 15(23), 8371. https://doi.org/10.3390/ma15238371