Microstructural Evolution of SK85 Pearlitic Steel Deformed by Heavy Cold Rolling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- The initial texture is randomized before rolling and a strong {001} <110> texture is obtained at a 90% rolling reduction.
- (2)
- The average KAM angle of ferrite increases from 0.72° before rolling to a maximum of 2.11° at a 90% rolling reduction revealing that dislocation strengthening is the main strengthening mechanism for cold-rolled SK85 steel.
- (3)
- A transition from bcc to bct ferrite occurs at a 90% rolling reduction because of the supersaturation of carbon generated by the strain-induced decomposition of cementite.
- (4)
- The ultimate tensile strength of SK 85 steel is 1264 MPa before rolling, which reaches 2318 MPa at a 90% rolling reduction due to solid solution hardening.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borchers, C.; Kirchheim, R. Cold-drawn pearlitic steel wires. Prog. Mater. Sci. 2016, 82, 405–444. [Google Scholar] [CrossRef]
- Tagashira, S.; Sakai, K.; Furuhara, T.; Maki, T. Deformation microstructure and tensile strength of cold rolled pearlitic steel sheets. ISIJ Int. 2000, 40, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, S.; Nakajima, T.; Satoh, T.; Ebata, T. Magnetostriction of heavily deformed Fe-Co binary alloys prepared by forging and cold rolling. Mater. Sci. Eng. B 2015, 193, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Pereloma, E.; Edmonds, D.V. Phase Transformations in Steels, 1st ed.; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- Zhang, X.D.; Hansen, N.; Godfrey, A.; Huang, X.X. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire. Acta. Mater. 2016, 114, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Fu, L.; Ji, X.; Ding, Y.; Wang, W.; Wen, M.; Shan, A. Microstructure evolution and mechanical property of ultrafine-grained pearlitic steel by cold rolling: The influence of cementite morphology. Mater. Sci. Eng. A 2021, 824, 141860. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Godfrey, A.; Hansen, N.; Huang, X.X.; Liu, W.; Liu, Q. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing. Mater. Charact. 2010, 61, 65–72. [Google Scholar] [CrossRef]
- Langford, G. Deformation of Pearlite. Metall. Trans. A 1977, 8, 861–875. [Google Scholar] [CrossRef]
- Dollar, M.; Bernstein, I.M.; Thompson, A.W. Influence of deformation substructure on flow and fracture of a fully pearlitic steel. Acta. Metall. 1988, 36, 310–320. [Google Scholar] [CrossRef]
- Buono, V.T.L.; Gonzalez, B.M.; Lima, T.M.; Andrade, M.S. Measurement of fine pearlite interlamellar spacing by atomic force microscopy. J. Mater. Sci. 1997, 32, 1005–1008. [Google Scholar] [CrossRef]
- Zelin, M. Microstructure evolution in pearlitic steels during wire drawing. Acta. Mater. 2002, 50, 4431–4447. [Google Scholar] [CrossRef]
- Zhang, X.D.; Godfrey, A.; Huang, X.X.; Hansen, N.; Liu, Q. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta. Mater. 2011, 59, 3422–3430. [Google Scholar] [CrossRef]
- Gridnev, V.N.; Nemoshkalenko, V.N.; Meshkov, Y.Y.; Gavrilyuk, V.G.; Prokopenko, V.G.; Razumov, O.N. Mössbauer effect in deformed Fe-C alloys. Phys. Status. Solidi. A 1975, 31, 201–210. [Google Scholar] [CrossRef]
- Languillaume, J.; Kapelski, G.; Baudelet, B. Cementite dissolution in heavily cold drawn pearlitic steel wires. Acta. Mater. 1997, 45, 1201–1212. [Google Scholar] [CrossRef]
- Taniyama, A.; Takayama, T.; Arai, M.; Hamada, T. Structure analysis of ferrite in deformed pearlitic steel by means of X-ray diffraction method with synchrotron radiation. Scr. Mater. 2004, 51, 53–58. [Google Scholar] [CrossRef]
- Danoix, F.; Julien, D.; Sauvage, X.; Copreaux, J. Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe. Mater. Sci. Eng. A 1998, 250, 8–13. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Borchers, C.; Chen, Y.Z.; Goto, S.; Raabe, D.; Kirchheim, R. Atom probe tomography characterization of heavily cold drawn pearlitic steel wire. Ultramicroscopy 2011, 111, 628–632. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Borchers, C.; Westerkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta. Mater. 2011, 59, 3965–3977. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.D.; Hong, S.P.; Baik, S.I.; Ko, D.S.; Lee, C.Y.; Lee, D.L.; Kim, Y.W. Quantitative measurement of cementite dissociation in drawn pearlitic steel. Mater. Sci. Eng. A 2011, 528, 4947–4952. [Google Scholar] [CrossRef]
- Lamontagne, A.; Massardier, V.; Kléber, X.; Sauvage, X.; Mari, D. Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires. Mater. Sci. Eng. A 2015, 644, 105–113. [Google Scholar] [CrossRef]
- Zhang, X.D.; Godfrey, A.; Hansen, N.; Huang, X.X. Hierarchical structures in cold-drawn pearlitic steel wire. Acta. Mater. 2013, 61, 4898–4909. [Google Scholar] [CrossRef] [Green Version]
- Saraf, L. Kernel average misorientation confidence index correlation from FIB sliced Ni-Fe-Cr alloy surface. Microsc. Microanal. 2011, 17, 424–425. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, C.D.; Liu, M.; Wang, C.H.; Dai, Y.C.; Li, X.; Russell, A.M.; Zhang, C.X.; Zhang, Z.H.; Cao, G.H. Effects of microstructure and crystallography on mechanical properties of cold-rolled SAE1078 pearlitic steel. Mater. Sci. Eng. A 2018, 709, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yang, C.D.; Cao, G.H.; Russell, A.M.; Liu, Y.H.; Dong, X.M.; Zhang, Z.H. Effect of microstructure and crystallography on sulfide stress cracking in API-5CT-C110 casing steel. Mater. Sci. Eng. A 2016, 671, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Wang, C.H.; Dai, Y.C.; Li, X.; Cao, G.H.; Russell, A.M.; Liu, Y.H.; Dong, X.M.; Zhang, Z.H. Effect of quenching and tempering process on sulfide stress cracking susceptibility in API-5CT-C110 casing steel. Mater. Sci. Eng. A 2017, 688, 378–387. [Google Scholar] [CrossRef]
- Callister, W.D., Jr.; Rethwisch, D.G.; Balsubramaniam, R. Callister’s Materials Science and Engineering, 8th ed.; Wiley India: New Delhi, India, 2010. [Google Scholar]
- Randjbaran, E.; Majid, D.; Zahari, R.; Sultan, M.; Mazlan, N. Impacts of volume of carbon nanotubes on bending for carbon-kevlar hybrid fabrics. J. Appl. Comput. Mech. 2021, 7, 839–848. [Google Scholar]
- ASTM A370-10; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International: West Conshohocken, PA, USA, 2010.
- Embury, J.D.; Fisher, R.M. The structure and properties of drawn pearlite. Acta Metall. 1966, 14, 147–159. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Hansen, N. Boundary strengthening in undeformed and deformed polycrystals. Mater. Sci. Eng. A 2005, 409, 39–45. [Google Scholar] [CrossRef]
- Oertel, C.G.; Hünsche, I.; Skrotzki, W.; Knabl, W.; Lorich, A.; Resch, J. Plastic anisotropy of straight and cross rolled molybdenum sheets. Mater. Sci. Eng. A 2008, 483, 79–83. [Google Scholar] [CrossRef]
- Oertel, C.G.; Hünsche, I.; Skrotzki, W.; Lorich, A.; Knabl, W.; Resch, J.; Trenkwalder, T. Influence of cross rolling and heat treatment on texture and forming properties of molybdenum sheets. Int. J. Refract. Met. Hard Mater. 2010, 28, 722–727. [Google Scholar] [CrossRef]
- Wang, D.Z.; Ji, Y.X.; Wu, Z.Z. Effects of cross rolling on texture, mechanical properties and anisotropy of pure Mo plates. Trans. Nonferrous. Met. Soc. China 2020, 30, 2170–2176. [Google Scholar] [CrossRef]
- Duan, J.Q.; Quadir, M.Z.; Xu, W.; Kong, C.; Ferry, M. Texture balancing in a fcc/bcc multilayered composite produced by accumulative roll bonding. Acta. Mater. 2017, 123, 11–23. [Google Scholar] [CrossRef]
- Gavriljuk, V.G. Decomposition of cementite in pearlitic steel due to plastic deformation. Mater. Sci. Eng. A 2003, 345, 81–89. [Google Scholar] [CrossRef]
- Gavriljuk, V.G. Comment on “Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires”. Scr. Mater. 2001, 45, 1469–1472. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Fe |
---|---|---|---|---|
0.86 | 0.20 | 0.45 | 0.25 | Bal. |
Rolling Reduction (%) | 0 | 10 | 30 | 50 | 70 | 90 |
---|---|---|---|---|---|---|
YS (MPa) | 924 | 1221 | 1379 | 1419 | 1660 | 2161 |
UTS (MPa) | 1264 | 1347 | 1515 | 1611 | 1828 | 2318 |
Strain (%) | 14.0 | 12.5 | 8.0 | 5.5 | 2.0 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-D.; Liu, Y.; Zhou, G.-Y.; Zou, X.-L.; Lu, X.-G.; Cao, G.-H. Microstructural Evolution of SK85 Pearlitic Steel Deformed by Heavy Cold Rolling. Materials 2022, 15, 8405. https://doi.org/10.3390/ma15238405
Yang C-D, Liu Y, Zhou G-Y, Zou X-L, Lu X-G, Cao G-H. Microstructural Evolution of SK85 Pearlitic Steel Deformed by Heavy Cold Rolling. Materials. 2022; 15(23):8405. https://doi.org/10.3390/ma15238405
Chicago/Turabian StyleYang, Cai-Ding, Ye Liu, Gao-Yang Zhou, Xing-Li Zou, Xiong-Gang Lu, and Guang-Hui Cao. 2022. "Microstructural Evolution of SK85 Pearlitic Steel Deformed by Heavy Cold Rolling" Materials 15, no. 23: 8405. https://doi.org/10.3390/ma15238405
APA StyleYang, C. -D., Liu, Y., Zhou, G. -Y., Zou, X. -L., Lu, X. -G., & Cao, G. -H. (2022). Microstructural Evolution of SK85 Pearlitic Steel Deformed by Heavy Cold Rolling. Materials, 15(23), 8405. https://doi.org/10.3390/ma15238405