Hydration Behavior of Magnesium Potassium Phosphate Cement: Experimental Study and Thermodynamic Modeling
Abstract
:1. Introduction
- (1)
- Law of mass action (LMA) equation:
- (2)
- Minimization of Gibbs free energy of the system:
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. X-ray Diffraction (XRD)
2.2.2. Thermogravimetric and Differential Scanning Calorimetry (TG/DSC)
2.2.3. Scanning Electron Microscopy (SEM)
2.2.4. Mercury Intrusion Porosimetry (MIP)
2.2.5. Thermodynamic Modeling
3. Results and Discussion
3.1. Reaction Products in Hardened MKPC
3.2. Microstructure Analysis of MKPC
3.3. Pore Structure Analysis of MKPC
3.4. Thermodynamic Modeling Analysis
- (1)
- Exponential fitting:
- (2)
- Linear rational number approximation:
- (3)
- Quadratic rational number approximation:
- (1)
- Sum of squared errors (SSE):
- (2)
- Coefficient of determination (R2):
- (3)
- Adjusted coefficient of determination (Adjusted R2):
- (4)
- Root mean squared error (RMSE):
4. Conclusions
- (1)
- Dead burnt MgO reacts with KH2PO4, hardening to produce MKPC. K-struvite is the main hydration product, with a plate-like crystalline phase. The hydration rate of MKPC is very fast, and its hydration reaction process mainly occurs before 1 day.
- (2)
- With the deepening of the degree of hydration, the content of the hydration product K-struvite increases, the pores in the system decrease, and the pore diameter distribution shifts toward the direction of small pores, with the structure becoming denser.
- (3)
- Thermodynamic modeling effectively analyzes the content changes in each phase during the hydration of MKPC. The thermodynamic modeling methods have effectively promoted the study of the hydration of MKPC.
Author Contributions
Funding
Conflicts of Interest
References
- Xing, F.; Ding, Z.; Li, Z.J. Study of potassium-based magnesium phosphate cement. Adv. Cem. Res. 2011, 23, 81–87. [Google Scholar] [CrossRef]
- Han, W.; Chen, H.; Li, X.; Zhang, T. Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products. Cem. Concr. Res. 2020, 138, 106223. [Google Scholar] [CrossRef]
- Marusiak, S.; Kapicova, A.; Pivak, A.; Pavlikova, M.; Pavlik, Z. Magnesium Potassium Phosphate Cement-Based Derivatives for Construction Use: Experimental Assessment. Materials 2022, 15, 1896. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Chau, C.K.; Li, Z. Setting and strength development of magnesium phosphate cement paste. Adv. Cem. Res. 2009, 21, 175–180. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B. Factors that affect the properties of magnesium phosphate cement. Constr. Build. Mater. 2013, 47, 977–983. [Google Scholar] [CrossRef]
- Deng, Q.; Lai, Z.; Xiao, R.; Wu, J.; Liu, M.; Lu, Z.; Lv, S. Effect of Waste Glass on the Properties and Microstructure of Magnesium Potassium Phosphate Cement. Materials 2021, 14, 2073. [Google Scholar] [CrossRef]
- Qiao, F.; Chau, C.K.; Li, Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr. Build. Mater. 2010, 24, 695–700. [Google Scholar] [CrossRef]
- Li, Y.; Bai, W.; Shi, T. A study of the bonding performance of magnesium phosphate cement on mortar and concrete. Constr. Build. Mater. 2017, 142, 459–468. [Google Scholar] [CrossRef]
- Qin, J.; Qian, J.; You, C.; Fan, Y.; Li, Z.; Wang, H. Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate. Constr. Build. Mater. 2018, 167, 166–176. [Google Scholar] [CrossRef]
- Liu, K.; Ma, S.; Zhang, Z.; Han, F. Hydration and Properties of Magnesium Potassium Phosphate Cement Modified by Granulated Blast-Furnace Slag: Influence of Fineness. Materials 2022, 15, 918. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Hou, D.; Wang, Z. Nanoscale insight on the durability of magnesium phosphate cement: A molecular dynamics study. RSC Adv. 2020, 10, 40180–40195. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Lai, X.; Shi, J.; Lu, Z. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement. Constr. Build. Mater. 2016, 129, 70–78. [Google Scholar] [CrossRef]
- Cao, X.; Wang, W.; Ma, R.; Sun, S.; Lin, J. Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions. Environ. Pollut. 2019, 253, 171–180. [Google Scholar] [CrossRef]
- Feng, H.; Wang, Y.; Guo, A.; Zhao, X. Mechanical Properties and Water Stability of High Ductility Magnesium Phosphate Cement-Based Composites (HDMC). Materials 2021, 14, 3169. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Ogino, I.; Mukai, S.R. Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability. Adv. Powder Technol. 2013, 24, 520–524. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Chen, Z.; Kang, T.; Ding, X.; Li, Y.; Liao, Y.; Chen, C.; Yuan, H.; Peng, H. A study on bone cement containing magnesium potassium phosphate for bone repair. Cogent Biol. 2018, 4, 1487255. [Google Scholar] [CrossRef]
- Heilig, P.; Sandner, P.; Jordan, M.C.; Jakubietz, R.G.; Meffert, R.H.; Gbureck, U.; Hoelscher-Doht, S. Experimental Drillable Magnesium Phosphate Cement Is a Promising Alternative to Conventional Bone Cements. Materials 2021, 14, 1925. [Google Scholar] [CrossRef]
- Lv, S.; Qu, T.; Al-Ward, H.; Mu, L.; Qiu, H.; Zhang, Y. Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration. Materials 2022, 15, 2293. [Google Scholar] [CrossRef]
- Xu, B.; Lothenbach, B.; Leemann, A.; Winnefeld, F. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio. Cem. Concr. Res. 2018, 108, 140–151. [Google Scholar] [CrossRef]
- Ma, H.; Xu, B.; Liu, J.; Pei, H.; Li, Z. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater. Des. 2014, 64, 497–502. [Google Scholar] [CrossRef]
- Ma, H.; Xu, B.; Li, Z. Magnesium potassium phosphate cement paste: Degree of reaction, porosity and pore structure. Cem. Concr. Res. 2014, 65, 96–104. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.J.; Yuan, Z.L.; Zhang, J.; Liu, L.T.; Li, J.M.; Liu, Z. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 5058–5063. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Chen, B. Experimental study of phosphate salts influencing properties of magnesium phosphate cement. Constr. Build. Mater. 2014, 65, 480–486. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, B.; Zhang, G.; Guo, J.; Liu, R. Hydration Performance of Magnesium Potassium Phosphate Cement Using Sodium Alginate as a Candidate Retarder. Materials 2022, 15, 943. [Google Scholar] [CrossRef]
- Yang, J.; Zhen, S.; Wu, Q. Effect of Municipal Solid Waste Incineration Fly Ash on Properties of Magnesium Potassium Phosphate Paste. J. Mater. Civ. Eng. 2019, 31, 11. [Google Scholar] [CrossRef]
- Chau, C.K.; Qiao, F.; Li, Z.J. Potentiometric Study of the Formation of Magnesium Potassium Phosphate Hexahydrate. J. Mater. Civ. Eng. 2012, 24, 586–591. [Google Scholar] [CrossRef]
- Xu, B.; Winnefeld, F.; Lothenbach, B. Effect of temperature curing on properties and hydration of wollastonite blended magnesium potassium phosphate cements. Cem. Concr. Res. 2021, 142, 106370. [Google Scholar] [CrossRef]
- Tao, Y.; Zhenyu, L.; Yuanyuan, W.; Xin, H.; Jie, W.; Zhongyuan, L.; Shuzhen, L.; Feng, L.; Xiaoling, F.; Haibin, Z. Hydration process and microstructure of magnesium potassium phosphate cement with nitrate solution. Sci. Total Environ. 2020, 703, 134686. [Google Scholar] [CrossRef]
- Pang, B.; Liu, J.; Wang, B.; Liu, R.; Yang, Y. Effects of K-struvite on hydration behavior of magnesium potassium phosphate cement. Constr. Build. Mater. 2021, 275, 121741. [Google Scholar] [CrossRef]
- Winnefeld, F.; Lothenbach, B. Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modelling. Cem. Concr. Res. 2010, 40, 1239–1247. [Google Scholar] [CrossRef]
- Haha, M.B.; Lothenbach, B.; le Saout, G.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem. Concr. Res. 2012, 42, 74–83. [Google Scholar] [CrossRef]
- Wang, Y.; An, M.; Yu, Z.; Han, S. Impacts of various factors on the rehydration of cement-based materials with a low water–binder ratio using mathematical models. Constr. Build. Mater. 2016, 125, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Zajac, M. Application of thermodynamic modelling to hydrated cements. Cem. Concr. Res. 2019, 123, 105779. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Ke, Y.; Hills, C.; Kang, Y. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere 2009, 74, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Charlton, S.R.; Parkhurst, D.L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput. Geosci. 2011, 37, 1653–1663. [Google Scholar] [CrossRef]
- Holmes, N.; Tyrer, M.; West, R.; Lowe, A.; Kelliher, D. Using PHREEQC to model cement hydration. Constr. Build. Mater. 2022, 319, 126129. [Google Scholar] [CrossRef]
- Kulik, D.A.; Wagner, T.; Dmytrieva, S.V.; Kosakowski, G.; Hingerl, F.F.; Chudnenko, K.V.; Berner, U.R. GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 2012, 17, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kunther, W.; Dai, Z.; Skibsted, J. Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2016, 86, 29–41. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Guo, B.; Zhang, S.; Tong, Y.; Niu, D. Study on the Strength and Hydration Behavior of Sulfate-Resistant Cement in High Geothermal Environment. Materials 2022, 15, 2790. [Google Scholar] [CrossRef]
- Le Rouzic, M.; Chaussadent, T.; Stefan, L.; Saillio, M. On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes. Cem. Concr. Res. 2017, 96, 27–41. [Google Scholar] [CrossRef]
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G.D.; Myers, R.J. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef] [Green Version]
- Lothenbach, B.; Xu, B.; Winnefeld, F. Thermodynamic data for magnesium (potassium) phosphates. Appl. Geochem. 2019, 111, 104450. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhang, J.; Li, J.M.; Ma, A.B.; Liu, L.T. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2508–2512. [Google Scholar] [CrossRef] [PubMed]
- Le Rouzic, M.; Chaussadent, T.; Platret, G.; Stefan, L. Mechanisms of k-struvite formation in magnesium phosphate cements. Cem. Concr. Res. 2017, 91, 117–122. [Google Scholar] [CrossRef]
- Lahalle, H.; Coumes, C.C.D.; Mercier, C.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 2018, 109, 159–174. [Google Scholar] [CrossRef]
- Ding, Z.; Dong, B.; Xing, F.; Han, N.; Li, Z. Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram. Int. 2012, 38, 6281–6288. [Google Scholar] [CrossRef]
- Hou, D.; Yan, H.; Zhang, J.; Wang, P.; Li, Z. Experimental and computational investigation of magnesium phosphate cement mortar. Constr. Build. Mater. 2016, 112, 331–342. [Google Scholar] [CrossRef]
- Chong, L.; Shi, C.; Yang, J.; Jia, H. Effect of limestone powder on the water stability of magnesium phosphate cement-based materials. Constr. Build. Mater. 2017, 148, 590–598. [Google Scholar] [CrossRef]
- Wang, L.; Yu, I.K.M.; Tsang, D.C.W.; Li, S.; Poon, C.S. Mixture Design and Reaction Sequence for Recycling Construction Wood Waste into Rapid-Shaping Magnesia–Phosphate Cement Particleboard. Ind. Eng. Chem. Res. 2017, 56, 6645–6654. [Google Scholar] [CrossRef]
- Ma, H.; Li, Y. Discussion of the paper “Characterisation of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag” by L.J. Gardner et al. Cem. Concr. Res. 2018, 103, 245–248. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, G.; van Breugel, K. Characterization of pore structure in cement-based materials using pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cem. Concr. Res. 2010, 40, 1120–1128. [Google Scholar] [CrossRef]
Materials | MgO | SiO2 | CaO | Al2O3 | Fe2O3 | SO3 |
---|---|---|---|---|---|---|
Magnesia | 85.1 | 7.9 | 3.3 | 2.4 | 0.9 | 0.1 |
Species | Molecular Weight | log K° 1 | ΔfG° | ΔfH° | S° | CP° 2 | Vol 3 |
---|---|---|---|---|---|---|---|
[kJ/mol] | [kJ/mol] | [J/mol/K] | [J/mol/K] | [cm3/mol] | |||
Brucite Mg(OH)2 | 58 | 16.84 | −832.23 | −923.27 | 63.14 | 77.28 | 24.6 |
Periclase MgO | 40 | −569.38 | −601.66 | 26.95 | 37.8 | 11.3 | |
K-struvite MgKPO4·6H2O | 266 | −10.96 | −3240.8 | −3717.3 | 350.1 | 324.8 | 142.5 |
KDP KH2PO4 | 136 | −1415.9 | −1568.3 | 134.9 | 116.6 | 58.2 |
Number | Function | SSE | R2 | Adjusted R2 | RMSE |
---|---|---|---|---|---|
1 | Exponential | 8.48 × 10−5 | 0.9837 | 0.9350 | 0.0092 |
2 | Rational_linear | 5.63 × 10−5 | 0.9892 | 0.9784 | 0.0053 |
3 | Rational_quadratic | 4.99 × 10−5 | 0.9904 | 0.9617 | 0.0071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Niu, W.; Liu, Z.; Yang, Y.; Long, W.; Zhang, Y.; Dong, B. Hydration Behavior of Magnesium Potassium Phosphate Cement: Experimental Study and Thermodynamic Modeling. Materials 2022, 15, 8496. https://doi.org/10.3390/ma15238496
Zhang J, Niu W, Liu Z, Yang Y, Long W, Zhang Y, Dong B. Hydration Behavior of Magnesium Potassium Phosphate Cement: Experimental Study and Thermodynamic Modeling. Materials. 2022; 15(23):8496. https://doi.org/10.3390/ma15238496
Chicago/Turabian StyleZhang, Jinrui, Wenjun Niu, Zhen Liu, Youzhi Yang, Wujian Long, Yuanyuan Zhang, and Biqin Dong. 2022. "Hydration Behavior of Magnesium Potassium Phosphate Cement: Experimental Study and Thermodynamic Modeling" Materials 15, no. 23: 8496. https://doi.org/10.3390/ma15238496
APA StyleZhang, J., Niu, W., Liu, Z., Yang, Y., Long, W., Zhang, Y., & Dong, B. (2022). Hydration Behavior of Magnesium Potassium Phosphate Cement: Experimental Study and Thermodynamic Modeling. Materials, 15(23), 8496. https://doi.org/10.3390/ma15238496