Multi-Frequency Light Sources Based on CVD Diamond Matrices with a Mix of SiV− and GeV− Color Centers and Tungsten Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabrication of Nanodiamonds with Luminescent GeV−, SiV−, and W Color Centers
2.2. Scanning Electron Microscopy, Photoluminescence, and Cryogenic Measurements
3. Results and Discussion
- stronger temperature-induced reduction of the ZPL and LVM replicas;
- higher relative intensities of the vibration replicas with respect to that of ZPL, i.e., essentially higher values of the Huang–Rhys factor (S). Simple estimation of the Huang–Rhys factor defined by IZPL/Itot = e−S [25,26] gives a value rising from 0.9 to 1.5 in the temperature range 7–273 K, while S values of about 0.5–0.65 were reported for the SiV− and GeV− centers [2,25,26];
- significantly broader (~5–10 times) width of ZPL and LVM replicas at temperatures close to 0 K.
3.1. ZPL Intensity
3.2. ZPL Linewidth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aharonovich, I.; Greentree, A.; Prawer, S. Diamond photonics. Nat. Photonics 2011, 5, 397–405. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Boltrushko, V.; Kaasik, H.; Sildos, I. Phase relaxation in the vicinity of the dynamic instability: Anomalous temperature dependence of zero-phonon line. J. Lumin. 2004, 107, 351–358. [Google Scholar] [CrossRef]
- Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Burek, M.J.; Nguyen, C.T.; Rogers, L.J.; Siyushev, P.; Metsch, M.H.; Park, H.; et al. Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. Phys. Rev. Lett. 2017, 118, 223603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hizhnyakov, V.; Kaasik, H.; Sildos, I. Zero-Phonon Lines: The Effect of a Strong Softening of Elastic Springs in the Excited State. Phys. Status Solidi A 2002, 234, 644–653. [Google Scholar] [CrossRef]
- Dong, B.; Shi, C.; Xu, Z.; Wang, K.; Luo, H.; Sun, F.; Wang, P.; Wu, E.; Zhang, K.; Liu, J.; et al. Temperature dependence of optical centers in Ib diamond characterized by photoluminescence spectra. Diam. Relat. Mater. 2021, 116, 108389. [Google Scholar] [CrossRef]
- Dragounová, K.; Potůcek, Z.; Potocký, Š.; Bryknar, Z.; Kromka, A. Determination of temperature dependent parameters of zero-phonon line in photo-luminescence spectrum of silicon-vacancy centre in CVD diamond thin films. J. Electr. Eng. 2017, 68, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Jahnke, K.D.; Sipahigil, A.; Binder, J.M.; Doherty, M.W.; Metsch, M.; Rogers, L.J.; Manson, N.B.; Lukin, M.D.; Jelezko, F. Electron–phonon processes of the silicon-vacancy centre in diamond. New J. Phys. 2015, 17, 043011. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.-W.; Cojocaru, I.; Becker, J.; Fedotov, I.V.; Alkahtani, M.H.A.; Alajlan, A.; Blakley, S.; Rezaee, M.; Lyamkina, A.; Palyanov, Y.N.; et al. Germanium-Vacancy Color Center in Diamond as a Temperature Sensor. ACS Photonics 2018, 5, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Nahra, M.; Alshamaa, D.; Deturche, R.; Davydov, V.; Kulikova, L.; Agafonov, V.; Couteau, C. Single germanium vacancy centers in nanodiamonds with bulk-like spectral stability. AVS Quantum Sci. 2021, 3, 012001. [Google Scholar] [CrossRef]
- Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K.D.; Rogers, L.; Naydenov, B.; et al. Germanium-Vacancy Single Color Centers in Diamond. Sci. Rep. 2015, 5, 12882. [Google Scholar] [CrossRef]
- De Feudis, M.; Tallaire, A.; Nicolas, L.; Brinza, O.; Goldner, P.; Hétet, G.; Bénédic, F.; Achard, J. Large-Scale Fabrication of Highly Emissive Nanodiamonds by Chemical Vapor Deposition with Controlled Doping by SiV and GeV Centers from a Solid Source. Adv. Mater. Interfaces 2020, 7, 1901408. [Google Scholar] [CrossRef]
- Grudinkin, S.A.; Feoktistov, N.A.; Bogdanov, K.V.; Baranov, M.A.; Golubev, V.G.; Baranov, A.V. Effect of Reactive Ion Etching on the Luminescence of GeV Color Centers in CVD Diamond Nanocrystals. Nanomaterials 2021, 11, 2814. [Google Scholar] [CrossRef]
- Razgulov, A.; Lyapin, S.; Novikov, A.; Ekimov, E. Low-temperature photoluminescence study of GeV centres in HPHT diamond. J. Lumin. 2021, 242, 118556. [Google Scholar] [CrossRef]
- Häußler, S.; Thiering, G.; Dietrich, A.; Waasem, N.; Teraji, T.; Isoya, J.; Iwasaki, T.; Hatano, M.; Jelezko, F.; Gali, A.; et al. Photoluminescence excitation spectroscopy of SiV−and GeV−color center in diamond. New J. Phys. 2017, 19, 063036. [Google Scholar] [CrossRef]
- Bogdanov, K.V.; Baranov, M.A.; Feoktistov, N.A.; Kaliya, I.E.; Golubev, V.G.; Grudinkin, S.A.; Baranov, A.V. Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials 2022, 15, 3589. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B 2000, 61, 12909–12922. [Google Scholar] [CrossRef]
- Anderson, F.G.; Dallas, T.; Lal, S.; Gangopadhyay, S.; Holtz, M. The electronic structure of tungsten impurities in diamond films. Solid State Commun. 1997, 102, 867–870. [Google Scholar] [CrossRef]
- Lal, S.; Dallas, T.; Yi, S.; Gangopadhyay, S.; Holtz, M.; Anderson, F.G. Defect photoluminescence in polycrystalline diamond films grown by arc-jet chemical-vapor deposition. Phys. Rev. B 1996, 54, 13428–13431. [Google Scholar] [CrossRef]
- Beha, K.; Fedder, H.; Wolfer, M.; Becker, M.C.; Siyushev, P.; Jamali, M.; Batalov, A.; Hinz, C.; Hees, J.; Kirste, L.; et al. Diamond nanophotonics. Beilstein J. Nanotechnol. 2012, 3, 895–908. [Google Scholar] [CrossRef]
- Ludwig, G.W.; Woodbury, H.H. Electronic Structure of Transition Metal Ions in a Tetrahedral Lattice. Phys. Rev. Lett. 1960, 5, 98–100. [Google Scholar] [CrossRef]
- Feoktistov, N.A.; Sakharov, V.I.; Serenkov, I.T.; Tolmachev, V.A.; Korkin, I.V.; Aleksenskii, A.E.; Vul, A.; Golubev, V.G. Aerosol deposition of detonation nanodiamonds used as nucleation centers for the growth of nanocrystalline diamond films and isolated particles. Tech. Phys. 2011, 56, 718–724. [Google Scholar] [CrossRef]
- Winters, H.F.; Seki, H.; Rye, R.R.; Coltrin, M.E. Interaction of hydrogen, methane, ethylene, and cyclopentane with hot tungsten: Implications for the growth of diamond films. J. Appl. Phys. 1994, 76, 1228–1243. [Google Scholar] [CrossRef]
- Pasternak, D.G.; Dai, J.; Kalashnikov, D.A.; Sedov, V.S.; Martyanov, A.K.; Ralchenko, V.G.; Krivitsky, L.A.; Vlasov, I.I. Low-Temperature Silicon-Vacancy Luminescence of Individual Chemical Vapor Deposition Nanodiamonds Grown by Seeding and Spontaneous Nucleation. Phys. Status Solidi A 2020, 218, 2000274. [Google Scholar] [CrossRef]
- Walker, J.F. Optical absorption and luminescence in diamond. Rep. Prog. Phys. 1979, 42, 1605–1659. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Surovtsev, N.V. Germanium: A new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 2015, 5, 14789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, K.; Jia, G.; Li, J.; Wang, H.; Tian, Y. Photoluminescence study on the optical properties of silicon-vacancy centre in diamond. J. Alloy. Compd. 2020, 860, 157914. [Google Scholar] [CrossRef]
- Guo, R.; Wang, K.; Zhang, Y.; Xiao, Z.; Jia, G.; Wang, H.; Wu, Y.; Tian, Y. Adjustable charge states of nitrogen-vacancy centers in low-nitrogen diamond after electron irradiation and subsequent annealing. Appl. Phys. Lett. 2020, 117, 172104. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Lyapin, S.G.; Boldyrev, K.N.; Kondrin, M.V.; Khmelnitskiy, R.; Gavva, V.A.; Kotereva, T.V.; Popova, M.N. Germanium–vacancy color center in isotopically enriched diamonds synthesized at high pressures. J. Exp. Theor. Phys. Lett. 2015, 102, 701–706. [Google Scholar] [CrossRef]
- Dietrich, A.; Jahnke, K.D.; Binder, J.M.; Teraji, T.; Isoya, J.; Rogers, L.J.; Jelezko, F. Isotopically varying spectral features of silicon-vacancy in diamond. New J. Phys. 2014, 16, 113019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanov, K.V.; Kaliya, I.E.; Baranov, M.A.; Grudinkin, S.A.; Feoktistov, N.A.; Golubev, V.G.; Davydov, V.Y.; Smirnov, A.N.; Baranov, A.V. Multi-Frequency Light Sources Based on CVD Diamond Matrices with a Mix of SiV− and GeV− Color Centers and Tungsten Complexes. Materials 2022, 15, 8510. https://doi.org/10.3390/ma15238510
Bogdanov KV, Kaliya IE, Baranov MA, Grudinkin SA, Feoktistov NA, Golubev VG, Davydov VY, Smirnov AN, Baranov AV. Multi-Frequency Light Sources Based on CVD Diamond Matrices with a Mix of SiV− and GeV− Color Centers and Tungsten Complexes. Materials. 2022; 15(23):8510. https://doi.org/10.3390/ma15238510
Chicago/Turabian StyleBogdanov, Kirill V., Ilya E. Kaliya, Mikhail A. Baranov, Sergey A. Grudinkin, Nikolay A. Feoktistov, Valery G. Golubev, Valery Yu. Davydov, Alexander N. Smirnov, and Alexander V. Baranov. 2022. "Multi-Frequency Light Sources Based on CVD Diamond Matrices with a Mix of SiV− and GeV− Color Centers and Tungsten Complexes" Materials 15, no. 23: 8510. https://doi.org/10.3390/ma15238510
APA StyleBogdanov, K. V., Kaliya, I. E., Baranov, M. A., Grudinkin, S. A., Feoktistov, N. A., Golubev, V. G., Davydov, V. Y., Smirnov, A. N., & Baranov, A. V. (2022). Multi-Frequency Light Sources Based on CVD Diamond Matrices with a Mix of SiV− and GeV− Color Centers and Tungsten Complexes. Materials, 15(23), 8510. https://doi.org/10.3390/ma15238510