Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Verification of Sensitization by Oxalic Acid Test
3.2. Potentiodynamic Polarization
3.3. Exposure Immersion Test
4. Conclusions
- The heat exposure at 650 °C/40 h with slow cooling in air evoked sensitization of AISI 304 SS confirmed by oxalic acid electroetching test.
- Both independent corrosion tests showed decrease in corrosion resistance in acid chloride solution after sensitization.
- PP carried out at 20 ± 3 °C revealed a difference in corrosion behavior between the heat tinted (S) and chemically treated (SP) specimens. PP curve for SP specimen showed a narrow passivity region (Ep = −0.05 ± 0.04 V vs. SCE) the S specimen curve reflected active anodic dissolution. According to the PP curves at 50 °C, both S and SP specimens lost their passive behavior.
- 24 h exposure in acid chloride solution evoked the pitting corrosion of all sensitized specimens.
- The performed exposure test did not confirm a higher corrosion resistance of SP specimens compared to S specimens at 20 °C.
- According to the average corrosion rates (Table 6) the temperature of 50 °C significantly affected the corrosion kinetics. This correlates with results of PP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoshnaw, F.; Gubner, R. Corrosion Atlas Case Studies. Part I: General Aspects of Corrosion, Corrosion Control, and Corrosion Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–41. [Google Scholar]
- Lipiński, T. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K. Prod. Eng. Arch. PEA 2021, 27, 108–111. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Al Thani, N.S. A review of passivity breakdown on metal surfaces: Influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emergent Mater. 2021, 4, 1187–1203. [Google Scholar] [CrossRef]
- Yoon, H.; Ha, H.; Lee, T.; Kim, S.; Jang, J.; Moon, J.; Kang, N. Pitting Corrosion Resistance and Repassivation Behavior of C-Bearing Duplex Stainless Steel. Metals 2019, 9, 930. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, H.; Sun, X.; Zanb, B.; Liang, M. Chloride corrosion behavior on heating pipeline made by AISI 304 and AISI 316 in reclaimed water. RSC Adv. 2021, 11, 38765–38773. [Google Scholar] [CrossRef] [PubMed]
- Dastgerdi, A.A.; Brenna, A.; Ormellese, M.; Pedeferri, M.P.; Bolzoni, F. Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel. Corros. Sci. 2019, 159, 108160. [Google Scholar] [CrossRef] [Green Version]
- Loto, R.T. Study of the Corrosion Resistance of Type 304L and 316 Austenitic Stainless Steels in Acid Chloride Solution. Orient. J. Chem. 2017, 33, 1090–1096. [Google Scholar] [CrossRef]
- Bandson, A.V.; Patil, A.P.; Moon, A.P.; Khobragade, N.N. Intergranular Corrosion Behavior of Low-Nickel and 304 austenitic Stainless Steels. J. Mater. Eng. Perform. 2016, 25, 3615–3626. [Google Scholar]
- Won, S.Y.; Kim, G.B.; Yoo, Y.R.; Choi, S.H.; Kim, Y.S. Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel. Corros. Sci. Technol. 2022, 21, 230–241. [Google Scholar]
- Zhou, W.Q.; Ma, W.W.; Li, Y.M.; Sun, Y.F. Effect of Sensitizing Treatment on the Microstructure and Susceptibility to Intergranular Corrosion of High-Nitrogen Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 2021, 10, 25–35. [Google Scholar] [CrossRef]
- de Lacerda, J.C.; de Freitas, L.L.; Brito, R.F.; Moura Filho, F.; Teixeira, R.L.P. Comparative Study between Sensitization Degree of the 0.4% Mo Austenitic Stainless Steel and UNS S31803 Duplex Stainless Steel. Mater. Res. Ibero Am. J. 2021, 24, e20200408. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Cheng, Y.; Li, J.; Jiang, Y. The Intergranular Corrosion Susceptibility of Metastable Austenitic Cr–Mn–Ni–N–Cu High-Strength Stainless Steel under Various Heat Treatments. Materials 2019, 12, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Liang, T.; Dong, L.; Wang, C. Influence of sensitization on microstructure and passive property of AISI 2205 duplex stainless steel. Corros. Sci. 2016, 104, 144–151. [Google Scholar]
- Cárcel-Carrasco, F.J.; Pascual-Guillamón, M.; Solano García, L.; Salas-Vicente, F.; Pérez-Puig, M.A. Pitting Corrosion in AISI 304 Rolled Stainless Steel Welding at Different Deformation Levels. Appl. Sci. 2019, 9, 3265. [Google Scholar] [CrossRef]
- Tokuda, S.; Muto, I.; Sugawara, Y.; Hara, N. Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution. Corros. Sci. 2020, 167, 108506. [Google Scholar] [CrossRef]
- Mahajanam, S.; Heidersbach, K. Corrosion Studies of Heat-Tinted Austenitic Stainless Steel. Mater. Perform. 2021. Available online: https://nace.mydigitalpublication.com/publication/?i=704427&article_id=4006538&view=articleBrowser&ver=html5 (accessed on 26 May 2022).
- Elshawesh, F.; Elhoud, A. Role of heat tint on pitting corrosion of 304 austenitic stainless steel in chloride environment. In Proceedings of the EUROCORR 2004—Prevision a Long Terme et Modelisation de la Corrosion, Nice, France, 12–16 September 2004. [Google Scholar]
- Cleaning and Descaling Stainless Steels. A Designers’ Handbook Series N° 9001. Available online: https://nickelinstitute.org/media/4399/cleaning-and-descaling-stainless-steel-9001-updated.pdf (accessed on 13 June 2022).
- Cheng, C.Q.; Klinkenberg, L.I.; Ise, Y.; Zhao, J.; Tada, E.; Nishikata, A. Pitting corrosion of sensitised type 304 stainless steel under wet–dry cycling condition. Corros. Sci. 2017, 118, 217–226. [Google Scholar] [CrossRef]
- Tokuda, S.; Muto, I.; Sugawara, Y.; Hara, N. Effect of Sensitization on Pitting Corrosion at MnS and CrS in Type 304 Stainless Steel. J. Electrochem. Soc. 2021, 168, 091504. [Google Scholar] [CrossRef]
- Hou, Y.; Cheng, C.; Cao, T.; Min, X.; Zhao, J. Effects of Sensitization on the Metastable Pitting Corrosion of 304 Stainless Steel. Int. J. Electrochem. Sci. 2018, 13, 7095–7110. [Google Scholar] [CrossRef]
- Ezuber, H.; Alshater, A.; Nisar, S.O.; Gonsalvez, A.; Aslam, S. Effect of Surface Finish on the Pitting Corrosion Behavior of Sensitized AISI 304 Austenitic Stainless Steel Alloys in 3.5% NaCl Solutions. Surf. Eng. Appl. Electrochem. 2018, 54, 73–80. [Google Scholar] [CrossRef]
- Okpala, A.N.; Christian, A.; Amula, E. Effect of Sensitization on The Corrosion of Austenitic Stainless Steel in Fresh Water. J. Mech. Civ. Eng. 2016, 13, 133–137. [Google Scholar]
- McGuire, M.F. Stainless Steels for Design Engineers, 1st ed.; ASM International: Materials Park, OH, USA, 2008; pp. 151–185. [Google Scholar]
- ASTM International. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels. Available online: http://www.tdqs.ru/static/doc/astm_a262_15.pdf (accessed on 20 February 2022).
- Kuchariková, L.; Liptáková, T.; Tillová, E.; Kajánek, D.; Schmidová, E. Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals 2018, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Štrbák, M.; Kajánek, D.; Knap, V.; Florková, Z.; Pastorková, J.; Hadzima, B.; Goraus, M. Effect of plasma electrolytic oxidation on the short-term corrosion behaviour of AZ91 magnesium alloy in aggressive chloride environment. Coatings 2022, 12, 566. [Google Scholar] [CrossRef]
- Zatkalíková, V.; Markovičová, L. Influence of temperature on corrosion resistance of austenitic stainless steel in Cl− containing solutions. Prod. Eng. Arch. 2019, 25, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Aghuy, A.A.; Zakeri, M.; Moayed, M.H. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros. Sci. 2015, 94, 368–376. [Google Scholar] [CrossRef]
- Petkovic, D.L.; Madic, M.J.; Radenkovic, G.M. The Effects of Passivation Parameters on Pitting Potential of Biomedical Stainless Steel. Chem. Ind. Chem. Eng. Q. 2017, 23, 121–129. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, Q.C.; Li, J.; Tan, L.L.; Yang, K. Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Nitric Acid Passivation. Acta Metall. Sin. Engl. Lett. 2020, 33, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Y.; Wei, Y.H.; Yang, J.; Emori, W.; Li, J. Effects of nitric acid passivation on the corrosion behavior of ZG06Cr13Ni4Mo stainless steel in simulated marine atmosphere. Mater. Corros. Werkst. Korros. 2020, 71, 1576–1590. [Google Scholar] [CrossRef]
- Guo, M.X.; Tang, J.R.; Pan, C.; Wang, Z.Y. The effect of temperature and UV irradiation on corrosion behavior of 304 stainless steel exposed to a simulated marine atmosphere. Mater. Corros. Werkst. Korros. 2022, 73, 876–886. [Google Scholar] [CrossRef]
- Lv, J.L.; Luo, H.Y. Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels. J. Mater. Eng. Perform. 2014, 23, 4223–4229. [Google Scholar] [CrossRef]
- Konovalova, V. The effect of temperature on the corrosion rate of iron-carbon alloys. Mater. Today Proc. 2021, 38, 1326–1329. [Google Scholar] [CrossRef]
- Dong, B.; Wen, X.D.; Feng, L. Temperature Effect on Corrosion Behavior of 304LN Stainless Steel and Carbon Steel Rebars in Chloride Contaminated Concrete Pore Solution Using Electrochemical Method. Int. J. Electrochem. Sci. 2020, 15, 10844–10853. [Google Scholar] [CrossRef]
- Wang, Q.C.; Zhang, B.C.; Ren, Y.B.; Yang, K. A self-healing stainless steel: Role of nitrogen in eliminating detrimental effect of cold working on pitting corrosion resistance. Corros. Sci. 2018, 145, 55–66. [Google Scholar] [CrossRef]
- Sun, M.; He, L.; Li, X.Q.; Li, P. Correlation between Critical Pitting Temperature and Degree of Sensitization of UNS S32750 Duplex Stainless Steel Corrosion. Int. J. Electrochem. Sci. 2020, 15, 1557–1570. [Google Scholar] [CrossRef]
- Taji, I.; Moayed, M.H.; Mirjalili, M. Correlation between sensitization and pitting corrosion of AISI 403 martensitic stainless steel. Corros. Sci. 2015, 92, 301–308. [Google Scholar] [CrossRef]
- Liptáková, T.; Bolzoni, F.; Trško, L. Specification of surface parameters effects on corrosion behavior of the AISI 316Ti in dependence on experimental methods. J. Adhes. Sci. Technol. 2016, 30, 2329–2344. [Google Scholar] [CrossRef]
- Szklarska–Smialowska, Z. Pitting and Crevice Corrosion, 1st ed.; NACE International: Houston, TX, USA, 2005; pp. 15–138. [Google Scholar]
Cr | Ni | Mn | N | C | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|
18.00 | 8.01 | 1.40 | 0.075 | 0.027 | 0.38 | 0.031 | 0.004 | balance |
Component | Content (wt %) | Temperature (°C) | Time (s) | Current Density (A.cm−2) |
---|---|---|---|---|
oxalic acid demineralized water | 10 90 | 20 ± 3 | 90 | 1.0 |
Component | Volume (mL) | Temperature (°C) | Time (min) |
---|---|---|---|
HF HNO3 H2O | 2 15 to 100 mL | 50 | 10 |
Type of Surface | Specimen Designation |
---|---|
Sensitized (heat tinted) | S |
Sensitized and pickled (without high-temperature oxides) | SP |
Original non-treated | As received |
Specimen Designation and Temperature (°C) | Corrosion Potential Ecorr (V vs. SCE) | Corrosion Current Density icorr (10−3 mA/cm2) | Pitting Potential Ep (V vs. SCE) |
---|---|---|---|
As received 20 | −0.23 ± 0.02 | - | 0.22 ± 0.01 |
S 20 | −0.39 ± 0.03 | 12.1 ± 0.49 | - |
SP 20 | −0.27 ± 0.02 | - | −0.05 ± 0.04 |
As received 50 | −0.38 ± 0.03 | - | 0.09 ± 0.03 |
S 50 | −0.41 ± 0.03 | 24.0 ± 0.61 | - |
SP 50 | −0.43 ± 0.03 | 80.5 ± 1.02 | - |
Specimen Designation and Temperature (°C) | Average Corrosion Rate (g/(m2 h)) |
---|---|
As received 20 | 1.84 ± 0.51 |
S 20 | 12.77 ± 0.49 |
SP 20 | 14.41 ± 0.89 |
As received 50 | 15.14 ± 0.31 |
S 50 | 21.02 ± 0.37 |
SP 50 | 21.59 ± 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zatkalíková, V.; Uhríčik, M.; Markovičová, L.; Kuchariková, L. Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution. Materials 2022, 15, 8543. https://doi.org/10.3390/ma15238543
Zatkalíková V, Uhríčik M, Markovičová L, Kuchariková L. Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution. Materials. 2022; 15(23):8543. https://doi.org/10.3390/ma15238543
Chicago/Turabian StyleZatkalíková, Viera, Milan Uhríčik, Lenka Markovičová, and Lenka Kuchariková. 2022. "Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution" Materials 15, no. 23: 8543. https://doi.org/10.3390/ma15238543
APA StyleZatkalíková, V., Uhríčik, M., Markovičová, L., & Kuchariková, L. (2022). Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution. Materials, 15(23), 8543. https://doi.org/10.3390/ma15238543