The Construction of a Footbridge Prototype with Biological Self-Healing Concrete: A Field Study in a Humid Continental Climate Region
Abstract
:1. Introduction
2. Footbridge Design
3. Production and Testing of Biological Concrete
3.1. Laboratory Tests
3.2. Field Tests
4. Construction of the Bridge
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Stud. Constr. Mater. 2018, 8, 238–247. [Google Scholar] [CrossRef]
- Wang, J.; Ersan, Y.C.; Boon, N.; De Belie, N. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 2016, 100, 2993–3007. [Google Scholar] [CrossRef] [PubMed]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, W. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Amran, M.; Onaizi, A.M.; Fediuk, R.; Vatin, N.I.; Muhammad Rashid, R.S.; Abdelgader, H.; Ozbakkaloglu, T. Self-Healing Concrete as a Prospective Construction Material: A Review. Materials 2022, 15, 3214. [Google Scholar] [CrossRef] [PubMed]
- De Belie, N.; Van Belleghem, B.; Erşan, Y.Ç.; Van Tittelboom, K. Durability of self-healing concrete. In Proceedings of the Concrete Solutions-7th International Conference on Concrete Repair, Cluj Napoca, Romania, 30 October–2 November 2019; Volume 289. [Google Scholar]
- Van Mullem, T.; Gruyaert, E.; Caspeele, R.; De Belie, N. First large scale application with self-healing concrete in belgium: Analysis of the laboratory control tests. Materials 2020, 13, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R.; Teall, O.; Pilegis, M.; Kanellopoulos, A.; Sharma, T.; Jefferson, A.; Gardner, D.; Al-Tabbaa, A.; Paine, K.; Lark, R. Large scale application of self-healing concrete: Design, construction, and testing. Front. Mater. 2018, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Kanavaris, F.; Jędrzejewska, A.; Sfikas, I.P.; Schlicke, D.; Kuperman, S.; Šmilauer, V.; Honório, T.; Fairbairn, E.M.R.; Valentim, G.; de Faria, E.F.; et al. Enhanced massivity index based on evidence from case studies: Towards a robust pre-design assessment of early-age thermal cracking risk and practical recommendations. Constr. Build. Mater. 2021, 271, 121570. [Google Scholar] [CrossRef]
- Qian, C.; Zheng, T.; Zhang, X.; Su, Y. Application of microbial self-healing concrete: Case study. Constr. Build. Mater. 2021, 290, 123226. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Ivaškė, A.; Malaiškienė, J.; Urbonavičius, J. Impact of Portland cement type on bacterial viability in biological concrete. Cem. Concr. Compos. 2022, 127, 104413. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, G.; Wang, Y.; Li, Z. Optimization of sporulation and germination conditions of functional bacteria for concrete crack-healing and evaluation of their repair capacity. ACS Appl. Mater. Interfaces 2020, 12, 10938–10948. [Google Scholar] [CrossRef] [PubMed]
- Jakubovskis, R.; Jankutė, A.; Urbonavičius, J.; Gribniak, V. Analysis of mechanical performance and durability of self-healing biological concrete. Constr. Build. Mater. 2020, 260, 119822. [Google Scholar] [CrossRef]
- Tziviloglou, E.; Wiktor, V.; Jonkers, H.M.; Schlangen, E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 2016, 122, 118–125. [Google Scholar] [CrossRef]
- Sierra Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, W. Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador. In Proceedings of the 5th International Conference on Self-Healing Materials, Durham, NC, USA, 22–24 June 2015. [Google Scholar]
- Mors, R.; Jonkers, H.M. Bacteria-based self-healing concrete: Evaluation of full scale demonstrator projects. RILEM Tech. Lett. 2019, 4, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qian, C. Engineering application of microbial self-healing concrete in lock channel wall. Mar. Georesour. Geotechnol. 2022, 40, 96–103. [Google Scholar] [CrossRef]
- EN 1991-2 Eurocode 1; Actions on Structures—Part 2: Traffic Loads on Bridges. European Committee for Standardization: Brussels, Belgium, 2003.
- Sharma, T.K.; Alazhari, M.; Heath, A.; Paine, K.; Cooper, R.M. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J. Appl. Microbiol. 2017, 122, 1233–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubovskis, R.; Jankutė, A.; Guobužaitė, S.; Boris, R.; Urbonavičius, J. Prolonging bacterial viability in biological concrete: Coated expanded clay particles. Materials 2021, 14, 2719. [Google Scholar] [CrossRef] [PubMed]
- BSEN 12390-3:2009; Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2009.
- Cervenka, V.; Jendele, L.; Cervenka, J. ATENA Program Documentation Part 1 Theory; Cervenka Consulting: Prague, Czech Republic, 2007; 231p. [Google Scholar]
- Ferrara, L.; Van Mullem, T.; Alonso, M.C.; Antonaci, P.; Borg, R.P.; Cuenca, E.; Jefferson, A.; Ng, P.-L.; Peled, A.; Roig-Flores, M.; et al. Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Constr. Build. Mater. 2018, 167, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, C.; Liu, Z.; Wang, H.; Ren, Q. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cem. Concr. Compos. 2022, 125, 104310. [Google Scholar] [CrossRef]
Material | kg/m3 | Mass Percentage |
---|---|---|
Portland cement CEM I 52.5 R | 463 | 26 |
Sand (0/4 mm) | 855 | 49 |
Healing agent—coated expanded clay | 270 | 15 |
Water | 168 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubovskis, R.; Boris, R. The Construction of a Footbridge Prototype with Biological Self-Healing Concrete: A Field Study in a Humid Continental Climate Region. Materials 2022, 15, 8585. https://doi.org/10.3390/ma15238585
Jakubovskis R, Boris R. The Construction of a Footbridge Prototype with Biological Self-Healing Concrete: A Field Study in a Humid Continental Climate Region. Materials. 2022; 15(23):8585. https://doi.org/10.3390/ma15238585
Chicago/Turabian StyleJakubovskis, Ronaldas, and Renata Boris. 2022. "The Construction of a Footbridge Prototype with Biological Self-Healing Concrete: A Field Study in a Humid Continental Climate Region" Materials 15, no. 23: 8585. https://doi.org/10.3390/ma15238585
APA StyleJakubovskis, R., & Boris, R. (2022). The Construction of a Footbridge Prototype with Biological Self-Healing Concrete: A Field Study in a Humid Continental Climate Region. Materials, 15(23), 8585. https://doi.org/10.3390/ma15238585