Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet
Abstract
:1. Introduction
2. Mechanical Property Testing of TC4 Titanium Alloy
2.1. Material Selection
2.2. Quasi-Static Tensile Test at Room Temperature
2.3. Dynamic Mechanical Test
2.4. Dispose of Experimental Data
3. Johnson–Cook Constitutive Model and Parameter Fitting
3.1. Johnson–Cook Constitutive Model
3.2. Johnson–Cook Failure Model
3.3. Parameter Fitting
4. Result and Discussion
4.1. ABAQUS Simulation Verification
4.2. Tensile Simulation Results
4.3. Tensile Fracture Morphology Analysis
5. Conclusions
- The tensile test of TC4 titanium alloy at different strain rates at room temperature was carried out. The Johnson–Cook constitutive model parameters and failure parameters were obtained by fitting. Through verification, the predicted results of the constitutive model were found to be close to the experimental results. The constitutive model exhibited good accuracy, providing a theoretical basis for the tensile simulation of TC4 titanium alloy.
- Through the finite element simulation of the test specimen, the whole process from crack initiation to specimen fracture was obtained. The crack in the smooth specimen was first generated in the center. With continuous accumulation of plastic strain, the crack expanded to both sides until the specimen was broken. The cracks in notched specimens were generated from both sides and extended to the middle until the specimens were broken.
- The tensile fracture of TC4 titanium alloy belongs to dimple fracture. When the tensile strain rate was low, the dimples were deep and dense. Compared with the experimental results, high density and deep dimples represented high elongation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gökelma, M.; Celik, D.; Tazegul, O.; Cimenoglu, H.; Friedrich, B. Characteristics of Ti6Al4V Powders Recycled from Turnings via the HDH Technique. Met.—Open Access Metall. J. 2018, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Ishfaq, K.; Moiduddin, K.; Ali, R.; Al-Shammary, N. Machinability of titanium alloy through electric discharge machining. Mater. Manuf. Process. 2019, 34, 93–102. [Google Scholar] [CrossRef]
- Cheng, W.; Outeiro, J.; Costes, J.P.; M’Saoubi, R.; Karaouni, H.; Astakhov, V. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Mech. Mater. 2019, 137, 103103. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Lin, J.G.; Dean, T.A.; Balint, D.S.; Gao, T.; Zhang, Z. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions. Mater. Sci. Eng. A 2013, 559, 352–358. [Google Scholar] [CrossRef]
- Kacem, A.; Laurent, H.; Thuillier, S. Experimental and numerical investigation of ductile fracture for AA6061-T6 sheets at room and elevated temperatures. Int. J. Mech. Sci. 2022, 222, 107201. [Google Scholar] [CrossRef]
- Basak, S.; Kim, C.; Jeong, W.; Jung, Y.I.; Lee, M.G. Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling. Int. J. Mech. Sci. 2022, 219, 107109. [Google Scholar] [CrossRef]
- Hao, S.; Shen, Y.; Cheng, J.-B. Phase field formulation for the fracture of a metal under impact with a fluid formulation. Eng. Fract. Mech. 2022, 261, 108142. [Google Scholar] [CrossRef]
- Kafka, O.L.; Jones, K.K.; Yu, C.; Cheng, P.; Liu, W.K. Image-based multiscale modeling with spatially varying microstructures from experiments: Demonstration with additively manufactured metal in fatigue and fracture. J. Mech. Phys. Solids 2021, 150, 104350. [Google Scholar] [CrossRef]
- Ji, H.; Peng, Z.; Pei, W.; Xin, L.; Ma, Z.; Lu, Y. Constitutive equation and hot processing map of TA15 titanium alloy. Mater. Res. Express 2020, 7, 046508. [Google Scholar] [CrossRef]
- Yang, X.; Wang, F.H.; Wang, W.L.; Liu, S.F.; Chen, Y.Q.; Tang, H.P. Comparison of two-step surface treatment on surface roughness and corrosion resistance of TC4 alloy parts prepared by SLM and SEBM. J. Alloy. Compd. 2022, 921, 165929. [Google Scholar] [CrossRef]
- Feng, P.; Yang, C.; Wang, B.; Li, J.; Shen, J.; Yang, X. Formability and microstructure of TC4 titanium alloy hollow shafts formed by cross-wedge rolling with a mandrel. Int. J. Adv. Manuf. Technol. 2021, 114, 365–377. [Google Scholar] [CrossRef]
- Li, Y.; Ji, H.; Cai, Z.; Tang, X.; Li, Y.; Liu, J. Comparative study on constitutive models for 21-4N heat resistant steel during high temperature deformation. Materials 2019, 12, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furushima, T.; Tsunezaki, H.; Manabe, K.I.; Alexsandrov, S. Ductile fracture and free surface roughening behaviors of pure copper foils for micro/meso-scale forming. Int. J. Mach. Tools Manuf. 2014, 76, 34–48. [Google Scholar] [CrossRef]
- Cai, S.; Ji, H.; Zhu, F.; Pei, W.; Xiao, W.; Tang, X. Research on the Corrosion Behavior of Q235 Pipeline Steel in an Atmospheric Environment through Experiment. Materials 2022, 15, 6502. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J. Validation of Johnson-Cook plasticity and damage model using impact experiment. Int. J. Impact Eng. 2013, 60, 67–75. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Vu, H.C. Forming limit prediction of anisotropic aluminum magnesium alloy sheet AA5052-H32 using micromechanical damage model. J. Mater. Eng. Perform. 2020, 29, 4677–4691. [Google Scholar] [CrossRef]
- Bi, J.; Ma Bl, Z.Y. Hot forming limit of TA15 titanium alloy based on MK model. J. Beijing Univ. Aeronaut. Astronaut. 2020, 46, 893–899. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Vasu, C.; Thaware, A.; Tiwari, G.; Dumpala, R. Experimental and numerical analysis of orthogonal cutting of high strength aluminium alloy Al7075-T6. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Hu, X.; Xie, L.; Gao, F.; Xiang, J. On the development of material constitutive model for 45CrNiMoVA ultra-high-strength steel. Metals 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zheng, B.; Zhang, K.; Yang, B.; Yu, X. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures. Int. J. Impact Eng. 2019, 126, 160–171. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Yuan, K.; Meng, W.; Li, P. Impact resistance prediction of superalloy honeycomb using modified Johnson–Cook constitutive model and fracture criterion. Int. J. Impact Eng. 2019, 131, 66–77. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, D.; Ye, X.; Chen, X.; He, Y. A simplified Johnson-Cook model of TC4T for aeroengine foreign object damage prediction. Eng. Fract. Mech. 2022, 269, 108523. [Google Scholar] [CrossRef]
- Ugodilinwa, N.E.; Khoshdarregi, M.; Ojo, O.A. Analysis and constitutive modeling of high strain rate deformation behavior of Haynes 282 aerospace superalloy. Mater. Today Commun. 2019, 20, 100545. [Google Scholar] [CrossRef]
- Bora, D.; Kumar, M.; Gautam, S.S. Ductile fracture in tube impact problem using a Lode angle dependent failure criterion. Procedia Struct. Integr. 2019, 14, 537–543. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Xiao, X.; Vershinin, V.V.; Ge, R.; Li, D.S. Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes. Int. J. Impact Eng. 2020, 139, 103498. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.; Yu, Q.; Chen, Z.; Vadim, S. Investigation of tensile and compressive mechanical properties of typical aerospace alloy materials. Trans. Can. Soc. Mech. Eng. 2021, 45, 612–625. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Ma, H.; Zhang, Y. The effect of thickness on fracture characteristics of TC4 titanium alloy sheets. Arch. Civ. Mech. Eng. 2022, 22, 151. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Zhang, Y. Effect of the notch depth on fracture behavior of TC4 titanium alloy sheets. Eng. Fract. Mech. 2022, 277, 108947. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, K.; Chu, X.; Zhao, B.; Gao, J. Constitutive modelling and microscopic analysis of TC4 alloy sheet at elevated temperature. Results Phys. 2019, 13, 102332. [Google Scholar] [CrossRef]
- Jia, Z.; Guan, B.; Zang, Y.; Wang, Y.; Mu, L. Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic strain rates. Mater. Sci. Eng. A 2021, 820, 141565. [Google Scholar] [CrossRef]
- Cai, Z.; Ji, H.; Pei, W.; Tang, X.; Huang, X.; Liu, J. Hot workability, constitutive model and processing map of 3Cr23Ni8Mn3N heat resistant steel. Vacuum 2019, 165, 324–336. [Google Scholar] [CrossRef]
- Peng, J.; Hu, C.; Li, Y.; Zhang, L.; Jing, F. Determination of parameters of Steinberg-Guinan constitutive model with shock wave experiments. Int. J. Mod. Phys. B 2008, 22, 1111–1116. [Google Scholar] [CrossRef]
- Ning, J.; Li, Q.; Zou, Z.; Liu, T.; Chen, L. Hot tensile deformation behavior and microstructural evolution of 2195 Al–Li alloy. Vacuum 2021, 188, 110176. [Google Scholar] [CrossRef]
- Li, Y.; Ji, H.; Li, W.; Li, Y.; Pei, W.; Liu, J. Hot deformation characteristics—Constitutive equation and processing maps—Of 21-4N heat-resistant steel. Materials 2018, 12, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasaee, S.; Mirzaei, A.; Almasi, D. Constitutive modelling of Al7075 using the Johnson–Cook model. Bull. Mater. Sci. 2020, 43, 23. [Google Scholar] [CrossRef]
- Rasaee, S.; Mirzaei, A. Constitutive modeling of 2024 aluminum alloy based on the Johnson–Cook model. Trans. Indian Inst. Met. 2019, 72, 1023–1030. [Google Scholar] [CrossRef]
- Li, S.; Sui, J.; Ding, F.; Wu, S.; Chen, W.; Wang, C. Optimization of milling aluminum alloy 6061-T6 using modified Johnson-Cook model. Simul. Model. Pract. Theory 2021, 111, 102330. [Google Scholar] [CrossRef]
- Wang, C.; Ding, F.; Tang, D.; Zheng, L.; Li, S.; Xie, Y. Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology. Int. J. Mach. Tools Manuf. 2016, 108, 13–26. [Google Scholar] [CrossRef]
- Qian, X.; Peng, X.; Song, Y.; Huang, J.; Wei, Y.; Liu, P.; Mao, X.; Zhang, J.; Wang, L. Dynamic constitutive relationship of CuCrZr alloy based on Johnson-Cook model. Nucl. Mater. Energy 2020, 24, 100768. [Google Scholar] [CrossRef]
Element | Al | V | Fe | C | N | H | O | Ti |
---|---|---|---|---|---|---|---|---|
Weight % | 5.50–6.75 | 3.50–4.50 | 0.30 | 0.10 | 0.05 | 0.015 | 0.20 | Balanced |
Constitutive Parameter | (MPa) | (MPa) | ||
---|---|---|---|---|
Stepwise estimation method | 1003.132 | 1003.510 | 0.663 | 0.0137 |
Specimen Type | Stress Triaxiality | Breaking Strain |
---|---|---|
Smooth specimens | 0.352 | 0.576 |
Notch specimen 1 | 0.556 | 0.208 |
Notch specimen 2 | 0.511 | 0.279 |
Notch specimen 3 | 0.482 | 0.312 |
Model Parameters | D1 | D2 | D3 | D4 |
---|---|---|---|---|
Fitted value | −0.197 | 2.332 | 3.138 | 0.034 |
Tensile Strain Rate (s−1) | Tensile Strength (MPa) | Percentage Elongation after Fracture (%) |
---|---|---|
0.001 | 1069 | 16.5 |
0.01 | 1084 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Ji, H.; Zhong, Y.; Han, C.; Tang, X. Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet. Materials 2022, 15, 8589. https://doi.org/10.3390/ma15238589
Zhao Z, Ji H, Zhong Y, Han C, Tang X. Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet. Materials. 2022; 15(23):8589. https://doi.org/10.3390/ma15238589
Chicago/Turabian StyleZhao, Zeling, Hongchao Ji, Yingzhuo Zhong, Chun Han, and Xuefeng Tang. 2022. "Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet" Materials 15, no. 23: 8589. https://doi.org/10.3390/ma15238589
APA StyleZhao, Z., Ji, H., Zhong, Y., Han, C., & Tang, X. (2022). Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet. Materials, 15(23), 8589. https://doi.org/10.3390/ma15238589