Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Ash Recycling—Metal Smelting
2.2.2. Chemical Analysis
2.2.3. X-ray Diffraction Analysis
2.2.4. Determination of Soluble Forms of Vanadium
Determination of Sulfuric Acid-Soluble Vanadium
Determination of Sodium Carbonate-Soluble Vanadium
Determination of Water-Soluble Vanadium
2.2.5. X-ray Photoelectron Spectrometry
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilligan, R.; Nikoloski, A.N. The extraction of vanadium from titanomagnetites and other sources. Miner. Eng. 2020, 146, 106106. [Google Scholar] [CrossRef]
- Volkov, A.I. State and prospects of the use of rare metals in ferrous metallurgy. Razved. Okhr. Nedr. 2020, 3, 11–18. (In Russian) [Google Scholar]
- Gao, F.; Olayiwola, A.U.; Liu, B.; Wang, S.; Du, H.; Li, J.; Wang, X.; Chen, D.; Zhang, Y. Review of Vanadium Production Part I: Primary Resources. Miner. Process. Extr. Metall. Rev. 2021, 42, 466–488. [Google Scholar] [CrossRef]
- Taylor, P.R.; Shuey, S.A.; Vidal, E.E.; Gomez, J.C. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: A review. Min. Metall. Explor. 2006, 23, 80–86. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kurniawan; Kim, E.-Y.; Chung, K.W.; Kim, R.; Jeon, H.-S. A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol. 2021, 12, 343–364. [Google Scholar] [CrossRef]
- Kologrieva, U.A.; Volkov, A.I.; Kirichenko, A.S.; Ermolov, V.M.; Mirakova, M.G. Development of a Production Scheme for Utilizing Vanadium Pentoxide Hydrometallurgical Production Waste. Metallurgist 2019, 63, 403–408. [Google Scholar] [CrossRef]
- Magomedov, R.N.; Popova, A.Z.; Maryutina, T.A.; Kadiev, K.M.; Khadzhiev, S.N. Current status and prospects of demetallization of heavy petroleum feedstock (review). Pet. Chem. 2015, 55, 423–443. [Google Scholar] [CrossRef]
- Yaschenko, I.G. Heavy vanadium-bearing oils of Russia. Bull. Tomsk. Polytech. Univ. 2012, 321, 105–111. [Google Scholar]
- Ismail, R.M.; Nagi, F.S. Comparative Evaluation of Metals and Heavy Metals in Some Yemeni Crude and Fuel Oil. Asian J. Appl. Sci. 2020, 8, 335–342. [Google Scholar] [CrossRef]
- Fan, J.; Tran, H.; Dietel, C. The fate of vanadium after being burned with petroleum coke in lime kilns. J. Sci. Technol. For. Prod. Process. 2012, 2, 13–18. [Google Scholar]
- Mizin, V.G.; Rabinovich, E.M.; Sirina, T.P.; Dobosh, V.G.; Rabinovich, M.E.; Krasnenko, T.I. Complex Processing of Vanadium Raw Materials: Chemistry and Technology; Ural Branch of the Russian Academy of Science: Yekaterinburg, Russia, 2005; p. 415. (In Russian) [Google Scholar]
- Al-Degs, Y.S.; Ghrir, A.; Khoury, H.; Walker, G.M.; Sunjuk, M.; Al-Ghouti, M.A. Characterization and utilization of fly ash of heavy fuel oil generated in power stations. Fuel Process. Technol. 2014, 123, 41–46. [Google Scholar] [CrossRef]
- Huffman, G.P.; Huggins, F.E.; Shah, N.; Huggins, R.; Linak, W.P.; Miller, C.A.; Pugmire, R.J.; Meuzelaar, H.L.C.; Seehra, M.S.; Manivannan, A. Characterization of Fine Particulate Matter Produced by Combustion of Residual Fuel Oil. J. Air Waste Manag. Assoc. 2000, 50, 1106–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Slaty, F.; Al-Dabsheh, I.; Odeh, T. Characteristics of residual oil fly ash and their utility for construction purposes. Kuwait J. Sci. 2019, 46, 83–89. [Google Scholar]
- Alonso-Hernández, C.M.; Bernal-Castillo, J.; Bolanos-Alvarez, Y.; Gómez-Batista, M.; Diaz-Asencio, M. Heavy metal content of bottom ashes from a fuel oil power plant and oil refinery in Cuba. Fuel 2011, 90, 2820–2823. [Google Scholar] [CrossRef]
- Stas, J.; Dahdouh, A.; Al-Chayah, O. Recovery of vanadium, nickel and molybdenum from fly ash of heavy oil-fired electrical power station. Chem. Eng. 2007, 51, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Huggins, F.E.; Huffman, G. X-ray Absorption Fine Structure (XAFS) Spectroscopic Characterization of Emissions from Combustion of Fossil Fuels. Int. J. Soc. Mater. Eng. Resour. 2002, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bella, M.D.; Italiano, F.; Magazu, S.; Mottese, A.F.; Interdonato, M.; Gentile, F.; Sabatino, G. Risk assessment of bottom ash from fuel oil power plant of Italy: Mineralogical, chemical and leaching characterization. Environ. Earth Sci. 2018, 77, 217. [Google Scholar] [CrossRef]
- Brasunas, A.S. Catastrophic corrosion resulting from vanadium pentoxide in fuel oil ash. Corrosion 1955, 11, 17–18. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Rusakova, M.V. Processing and utilization of vanadium-containing sludge from thermal power plants. Nov. Vross. Electroenerg. 2001, 9, 21–24. (In Russian) [Google Scholar]
- Zharski, I.M.; Orekhova, S.E.; Kurilo, I.I.; Bychek, I.V.; Kryshilovich, E.V. Vanadium-containing wastes recycling for enterprises using fuel oil: High expectations. In Chemistry and Technology of Inorganic Substance; BSTU: Minsk, Belarus, 2012; pp. 3–6. [Google Scholar]
- Goncharov, K.V.; Kashekov, D.Y.; Sadykhov, G.B.; Olyunina, T.V. Processing of fuel oil ash from thermal power plant with extraction of vanadium and nickel. Non-Ferr. Met. 2020, 1, 3–7. [Google Scholar] [CrossRef]
- Tagiyeva, L.T. The study of the conditions for the recovery of vanadium, gallium and nickel from the ash residue at burning of fuel oil by sinter and leaching methods. Azerbaijan Chem. J. 2020, 1, 46–52. [Google Scholar] [CrossRef]
- Mayorov, V.G.; Nikolaev, A.I.; Kopkov, V.K.; Safonova, L.A.; Serba, N.V. Study of conditions of vanadium (IV, V) leaching from ash. Russ. J. Appl. Chem. 2007, 80, 2020–2023. [Google Scholar] [CrossRef]
- Lapinskaya, M.E.; Shitt, E.S. Spectral examination of fly ash from heavy fuel oil containing added magnesium. J. Appl. Spectrosc. 1977, 27, 1614–1615. [Google Scholar] [CrossRef]
- Lin, C.-Y. Influences of vanadium compound on burning characteristics of emulsified marine fuel oil C. Ocean. Eng. 2000, 27, 589–601. [Google Scholar] [CrossRef]
- Basha, S.I.; Aziz, A.; Maslehuddin, M.; Ahmad, S.; Hakeem, A.S.; Rahman, M.M. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material—A Review. Chem. Rec. 2020, 20, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Danilov, A.M.; Okina, N.G.; Mitusova, T.N.; Pugach, I.A. Increase in the Efficiency of Use of Furnace Residual Fuel Oil. Chem. Technol. Fuels Oils 2003, 39, 6–9. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Tsai, M.-S. A study of the extraction of vanadium and nickel in oil-fired fly ash. Resour. Conserv. Recycl. 1998, 22, 163–176. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Degs, Y.S.; Ghrair, A.; Khoury, H.; Ziedan, M. Extraction and separation of vanadium and nickel from fly ash produced in heavy fuel power plants. Chem. Eng. J. 2011, 173, 191–197. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Degs, Y.S.; Ghrair, A.; Ziedan, M.; Khoury, H.; Abdelghani, J.I.; Khraisheh, M. Development of industrially viable geopolymers from treated petroleum fly ash. J. Clean. Prod. 2020, 280, 124808. [Google Scholar] [CrossRef]
- Nourizadeh, H.; Noori, M.; Mirazimi, M.; Badkoobehhezaveh, A.M.; Rashchi, F. Characterization and Ethanol-Sensing Behavior of Nanostructured Vanadium Pentoxide Recovered from Oil Fly Ash. Int. J. Environ. Res. 2021, 15, 985–999. [Google Scholar] [CrossRef]
- Shoppert, A.; Valeev, D.; Loginova, I.; Chaikin, L. Complete Extraction of Amorphous Aluminosilicate from Coal Fly Ash by Alkali Leaching under Atmospheric Pressure. Metals 2020, 10, 1684. [Google Scholar] [CrossRef]
- Shoppert, A.; Loginova, I.; Valeev, D. Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure. Materials 2021, 14, 7700. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Mishra, B. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process. JOM 2017, 70, 168–172. [Google Scholar] [CrossRef]
- Xiao, Y.; Jalkanen, H.; Yang, Y.; Mambote, C.R.; Boom, R. Ferrovanadium production from petroleum fly ash and BOF flue dust. Miner. Eng. 2010, 23, 1155–1157. [Google Scholar] [CrossRef]
- Abdel-latif, M.A. Recovery of vanadium and nickel from petroleum fly ash. Miner. Eng. 2002, 15, 953–961. [Google Scholar] [CrossRef]
- Sun, S.; Yang, K.; Liu, C.; Tu, G.; Xiao, F. Recovery of nickel and preparation of ferronickel alloy from spent petroleum catalyst via cooperative smelting–vitrification process with coal fly ash. Environ. Technol. 2021. [Google Scholar] [CrossRef]
- Kologrieva, U.; Volkov, A.; Krasnyanskaya, I.; Stulov, P.; Wainstein, D. Analysis of Hydrometallurgical Methods for Obtaining Vanadium Concentrates from the Waste by Chemical Production of Vanadium Pentoxide. Materials 2022, 15, 938. [Google Scholar] [CrossRef]
- Volkov, A.I.; Kologrieva, U.A. Investigation of the material composition of ash from the combustion of heavy fractions of oil and natural bitumen as a raw material for the extraction of vanadium. Probl. Chernoy Metall. I Mater. 2021, 3, 27–36. (In Russian) [Google Scholar]
- Volkov, A.I.; Ossipov, K.B.; Seregin, A.N.; Zhdanov, P.A.; Seregina, I.F.; Bolshov, M.A. Determination of Degree of Oxidation and Forms of Manganese Compounds in the Ulu-Telyak Oxidized Ore. Inorg. Mater. 2015, 51, 1394–1403. [Google Scholar] [CrossRef]
- Volkov, A.; Kologrieva, U.; Kovalev, A.; Wainstein, D.; Vakhrushev, V. Vanadium Chemical Compounds forms in Wastes of Vanadium Pentoxide Production. Materials 2020, 13, 4889. [Google Scholar] [CrossRef]
- Volkov, A.I.; Kologrieva, U.A.; Kovalev, A.I.; Vainshtein, D.L. Effect of Degree of Oxidation and Element Form in Vanadium Slag on Its Treatment Production Capacity. Metallurgist 2019, 63, 813–818. [Google Scholar] [CrossRef]
- Wang, H.; Li, F.; Sichen, D. Development of an analytical technique to determine the fractions of vanadium cations with different valences in slag. Metall. Mater. Trans. B 2011, 42, 9–12. [Google Scholar] [CrossRef]
- Zhdanov, P.A.; Seregina, I.F.; Osipov, K.B.; Bol’shov, M.A.; Skryleva, E.A.; Volkov, A.I.; Seregin, A.N. Determination of the Mode of Occurrence of V, Fe, and Mn in Slags and Charge of Vanadium Production by X-ray Spectroscopy. Inorg. Mater. 2017, 53, 1399–1404. [Google Scholar] [CrossRef]
- Shao, L.; Diao, J.; Zhou, W.; Zhang, T.; Xie, B. Non-isothermal crystallization behavior of spinel crystals in FeO-SiO2 -TiO2-V2O3 -Cr2O3 slag. Metall. Res. Technol. 2018, 116, 110. [Google Scholar] [CrossRef]
- Kovalev, A.; Wainstein, D.; Vakhrushev, V.; Volkov, A.; Kologrieva, U. Features of the Microstructure and Chemical Compositions of Vanadium-Containing Slags Including Determination of Vanadium Oxidation Degrees. Materials 2019, 12, 3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nivoix, V.; Gillot, B. Intermediate valencies of vanadium cations appearing during oxidation of vanadium–iron spinels. Mater. Chem. Phys. 2000, 63, 24–29. [Google Scholar] [CrossRef]
- Zhdanov, P.A.; Seregina, I.F.; Bol’shov, M.A.; Volkov, A.I.; Seregin, A.N. Determination of forms of element occurrence in samples of vanadium slag and slime. Inorg. Mater. 2016, 52, 1431–1439. [Google Scholar] [CrossRef]
- Wang, L.; Teng, L.; Chou, K.-C.; Seetharaman, S. Determination of Vanadium Valence State in CaO-MgO-Al2O3-SiO2 System By High-Temperature Mass Spectrometry. Metall. Mater. Trans. B 2013, 44, 948–953. [Google Scholar] [CrossRef]
- Li, X.; Meng, F.; Dong, X.; Liang, D.; Gao, F.; Wei, Y. Effect of CaO addition on phase formation in the Fe-Fe2O3-V2O3 system. J. Alloy. Compd. 2019, 772, 955–960. [Google Scholar] [CrossRef]
- Zhang, X.; Fanga, D.; Songa, S.; Chenga, G.; Xue, X. Selective leaching of vanadium over iron from vanadium slag. J. Hazard. Mater. 2019, 368, 300–307. [Google Scholar] [CrossRef]
- Zhanga, B.; Liu, C.; Liu, Z.; Li, Z.; Jiang, M. Remediation of the vanadium slag processing residue and recovery of the valuable elements. Process Saf. Environ. Prot. 2019, 128, 362–371. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, W.; Li, Y.; Ye, Q.; Yu, X.; Chen, Z. Effect of CaO on the Phase Evolution of Vanadium Slag during Crystallization and Roasting–Leaching Processes for Selective Extraction of Vanadium. Crystals 2022, 12, 927. [Google Scholar] [CrossRef]
- Lin, G.; Huang, J.; Zhang, Y.; Hu, P. A Sustainable Technique to Prepare High-Purity Vanadium Pentoxide via Purification with Low Ammonium Consumption. Materials 2022, 15, 1945. [Google Scholar] [CrossRef] [PubMed]
Component | Data for Different Samples | Content (Our Data) | |
---|---|---|---|
Range of Contents (after Calcination) | The Original Sample | After Calcination | |
Na2O | 0.10–4.74 | 0.13 | 0.45 |
MgO | 0.09–2.14 | 0.08 | 0.26 |
Al2O3 | 0.61–7.10 | 0.41 | 1.40 |
SiO2 | 0.11–23.00 | 0.07 | 0.23 |
P2O5 | 0.14–0.53 | 0.04 | 0.15 |
S | 0.39–11.21 | 2.8 | 9.67 |
Cl | 0.13–0.23 | n/d * | 0.07 |
K2O | 0.02–2.04 | 0.005 | 0.02 |
CaO | 0.08–4.94 | 0.05 | 0.18 |
TiO2 | 0.11–0.75 | 0.03 | 0.11 |
V2O5 | 15.18–70.70 | 16.2 | 55.9 |
MnO | 0.04–0.42 | 0.03 | 0.09 |
Fe2O3 | 7.15–64.91 | 2.7 | 9.3 |
Co3O4 | 0.06–4.60 | 0.02 | 0.06 |
NiO | 1.30–18.59 | 4.0 | 13.8 |
ZnO | 0.21–1.99 | 0.08 | 0.33 |
SrO | 0.03–0.06 | n/d * | 0.007 |
MoO3 | 0.06–0.75 | 0.06 | 0.24 |
BaO | 0.94–1.64 | n/d * | n/d |
PbO | 0.04–0.11 | 0.03 | 0.11 |
Cr2O3 | 0.17–0.51 | n/d * | n/d |
C | 0.16–91.1 ** | 65.0 | 0.01 |
Moisture | 0.15–49.0 ** | 44.0 | ~0 |
Ash content | 0.19–97.0 ** | 29.0 | ~100 |
Element | Compound Forms (Our Data [40]) | Compound Forms (Data from Other Authors [12,13,14,18,22,23,24,27] |
---|---|---|
Vanadium | VO2, V2O5, V6O13, Ni3(VO4)2, vanadium in the form of compounds V5+, V4+ | V5+, V4+, V3+—sulfate VOSO4·H2O, oxides V2O3, V2O5, Mg3V2O8, VO2·V2O3, spinel FeO·V2O3, and vanadium bronze NaV6O15 |
Nickel | FeNi2O4, Ni3(VO4)2 | spinel NiFe2O4, sulfate NiSO4, oxide NiO, sulfide Ni3S2 |
Iron | FeNi2O4, FeSO4 | oxides Fe3O4, Fe2O3, hydroxide FeOOH (goethite), sulfates FeSO4, Fe2(SO4)3, FeH(SO4)2·nH2O (rhomboclase), sulfide |
Sulfur | FeSO4 | metal sulfates (CaSO4, NiSO4, VOSO4·H2O, Fe2(SO4)3, CuSO4·H2O, Al2(SO4)3·17H2O, ZnSO4 and PbSO4), sulfite CaSO3, sulfides, elemental sulfur, and thiophene. |
Silicon and aluminum | quartz SiO2, aluminosilicates (gelenit Ca2Al[(Si,Al)2O7], anorthite Ca[(Al2Si2)O8], kaolinite H4Al2Si2O9, mullit, zeolites and cancrinite), sulfate–alunogen Al2(SO4)3·17H2O; potassium hydrosilicate KHSi2O5 | |
Other | hydrocarbons CnHm, carbon in the form of organic compounds with bonds O–C, O=C. | carbon and organic compounds, metal oxides, arsenates |
Sample | Deposits on the Electrode | Slag No. 1 | Slag No. 2 | Slag No. 3 |
---|---|---|---|---|
Al2O3 | 7.9 | 23.8 | 27.3 | 14.7 |
CaO | 1.94 | 3.03 | 1.83 | 6.99 |
Cr2O3 | 0.52 | 0.5 | 0.52 | 0.71 |
Fe | 5 | 3.8 | 4.5 | 15.1 |
MgO | 49 | 5.6 | 2.8 | 5.9 |
MnO | 0.15 | 0.11 | 0.07 | 0.16 |
P2O5 | 0.039 | 0.032 | 0.041 | 0.027 |
S | 0.03 | 0.08 | 0.04 | 0.02 |
SiO2 | 4.04 | 3.78 | 6.77 | 4.18 |
TiO2 | 0.13 | 0.22 | 0.18 | 0.18 |
V2O5 | 23.9 | 48.1 | 41.4 | 42.6 |
Na2O | 3.9 | 8.1 | 6.5 | 3.2 |
K2O | n/d * | 0.12 | 0.14 | n/d * |
NiO | 2.6 | 2.4 | 2.3 | 4.9 |
CuO | 0.05 | 0.03 | 0.04 | 0.03 |
ZnO | 0.09 | 0.05 | 0.03 | 0.05 |
Ga2O3 | n/d * | 0.02 | 0.03 | 0.03 |
SrO | 0.01 | 0.02 | 0.01 | 0.02 |
ZrO2 | 0.012 | 0.008 | 0.006 | 0.005 |
MoO3 | 0.01 | 0.02 | 0.01 | 0.01 |
C | 0.18 | 0.46 | 6.08 | 0.09 |
Phases | Deposits on the Electrode | Slag No. 1 | Slag No. 2 | Slag No. 3 |
---|---|---|---|---|
Periclase (MgO) | 43.9 | 13.2 | 1.1 | 16.2 |
Sodium-magnesium vanadate (NaMg4(VO4)3) | 13.1 | n/d * | n/d * | n/d * |
Forsterite (Mg2SiO4) | 16.8 | n/d * | n/d * | n/d * |
Spinel 1 (rich in Al–MgAl2O4) | 6.0 | 5.2 | 8.0 | 5.7 |
Spinel 2 (rich in Fe и V–FeV2O4) | 3.9 | 1.2 | 0.5 | 35.3 |
Hematite (Fe2O3) | 2.4 | n/d * | n/d * | n/d * |
Pyrolusite (MnO2) | 1.4 | n/d * | n/d * | n/d * |
Diaspore (AlOOH) | 2.7 | n/d * | n/d * | n/d * |
Beta-alumina (NaAl11O17) | n/d * | 17.7 | 8.6 | 0.43 |
Sodium metavanadate (NaVO3) | n/d * | 13.5 | 8.8 | 4.2 |
Nepheline (Na3KAl4Si4O16) | n/d * | 8.2 | 13.0 | 9.9 |
Karelianite (V2O3) | n/d * | 9.2 | 7.5 | n/d * |
Lepidocrocite (FeOOH) | n/d * | 1.36 | 2.7 | n/d * |
Graphite 2H (C) | n/d * | n/d * | 6.8 | n/d * |
Granate (Ca5Mg4(VO4)6) | n/d * | n/d * | n/d * | 26.1 |
Amorphous phase | 10 | 30 | 33 | 2 |
Sample | V2O5 (Total) | V2O5 (Sulfuric Acid-Soluble) | V2O5 (Sodium Carbonate-Soluble) | V2O5 (Water-Soluble) |
---|---|---|---|---|
Ash | 16.2 | 3.06 | - | - |
Slag No. 1 | 48.1 | 46.3 | 30.7 | 17.6 |
Slag No. 2 | 41.4 | 39.0 | 20.7 | 24.4 |
Slag No. 3 | 42.6 | 30.8 | 7.6 | 4.4 |
Sample | V2O5 (Total), wt% | Degree of Vanadium Extraction, % rel. | Spinel (FeV2O4),wt% | Sodium Metavanadate (NaVO3), wt% | Karelianite (V2O3), wt% | Granate (Ca5Mg4(VO4)6), wt% |
---|---|---|---|---|---|---|
Ash | 16.2 | 18.9 | n/d * | n/d * | n/d * | n/d * |
Slag No. 1 | 48.1 | 96.2 | 1.2 | 13.5 | 9.2 | n/d * |
Slag No. 2 | 41.4 | 94.2 | 0.5 | 8.8 | 7.5 | n/d * |
Slag No. 3 | 42.6 | 72.3 | 35.3 | 4.2 | n/d | 26.1 |
Sample | Binding Energy, eV | Oxidation Degree | Content, % at. |
---|---|---|---|
Ash | 516.5 | V4+ | 33 |
517.6 | V5+ | 67 | |
Slag No. 3 | 514.1 | Vn+, 0 < n < 3 | 4 |
515.5 | V3+ | 16 | |
516.7 | V4+ | 30 | |
517.4 | V5+ | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, A.; Kologrieva, U.; Stulov, P. Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants. Materials 2022, 15, 8596. https://doi.org/10.3390/ma15238596
Volkov A, Kologrieva U, Stulov P. Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants. Materials. 2022; 15(23):8596. https://doi.org/10.3390/ma15238596
Chicago/Turabian StyleVolkov, Anton, Ulyana Kologrieva, and Pavel Stulov. 2022. "Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants" Materials 15, no. 23: 8596. https://doi.org/10.3390/ma15238596
APA StyleVolkov, A., Kologrieva, U., & Stulov, P. (2022). Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants. Materials, 15(23), 8596. https://doi.org/10.3390/ma15238596