AFM Measurements and Testing Properties of HDPE and PBT Composites with Fillers in the Form of Montmorillonite and Aluminum Hydroxide
Abstract
:1. Introduction
2. Materials and Methods
- -
- Injection nozzle temperature: 205 °C;
- -
- Mold cavity temperature: 40 °C;
- -
- Injection rate: 45 cm3/s;
- -
- Injection time: 0.45 s;
- -
- Injection pressure: 60 MPa;
- -
- Clamping pressure: 30 MPa;
- -
- Holding time: 28 s;
- -
- Cooling time: 15 s.
- -
- Nozzle temperature: 260 °C;
- -
- Mold temperature: 80 °C;
- -
- Injection rate: 45 cm3/s;
- -
- Injection time: 0.45 s;
- -
- Injection pressure: 130 MPa;
- -
- Clamping pressure: 80 MPa;
- -
- Holding time: 20 s;
- -
- Cooling time: 25 s.
3. Results and Discussion
- —the sum of the integral intensities of radiation in the crystalline regions;
- —integral intensity of diffusely-scattered radiation in amorphous regions;
- —constant.
4. Conclusions
- -
- The addition of powdered fillers in the form of montmorillonite to high-density polyethylene and aluminum hydroxide to polybutylene terephthalate resulted in a slight increase in the density of the composites obtained.
- -
- The obtained materials were characterized by an amorphous crystalline structure. The degree of crystallinity determined by the X-ray method was about 90% for the specimens based on polyethylene and about 70% for the specimens based on polybutylene terephthalate.
- -
- The addition of fillers to both composites resulted in a slight increase in the mean tensile strength compared to pure polymers, which at the same time led to a decrease in the strain of the specimen.
- -
- It was found in the case of both composites that the addition of the applied fillers had little effect on the increase in the average hardness of the composites obtained.
- -
- During the examinations conducted using atomic force microscopy, ananticorrelation was observed between the texture anisotropy and elastic modulus.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosato, D.; Rosato, M.G.; Schott, N.R. Plastics Technology Handbook; Momentum Press: New York, NY, USA, 2010. [Google Scholar]
- Ehrenstein, G.W. Polymeric Materials; Hanser Publishers: Munich, Germany, 2001; pp. 1–12. [Google Scholar]
- Peters, E.N. Engineering Thermoplastics—Materials, Properties. Trends. In Applied Plastics Engineering Handbook, 2nd ed.; Kutz, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–26. [Google Scholar]
- Peters, E.N. Plastics: Thermoplastics, Thermosets, and Elastomers. In Handbook of Materials Selection; Kutz, M., Ed.; John Wiley&SOONS INC.: New York, NY, USA, 2002. [Google Scholar]
- Alkan, C.; Arslan, M.; Cici, M.; Kaya, M.; Aksoy, M. A study on the production of a new material from fly ash and polyethylene. Resour. Conserv. Recycl. 1995, 13, 147–154. [Google Scholar] [CrossRef]
- Schut, J.H. Fly-Ash Filler Stages a Comeback. Plastic Technology. 1999. Available online: www.ptonline.com/articles/fly-ash-filler-stages-a-comeback (accessed on 23 October 2022).
- Deepthi, M.V.; Sharma, M.; Sailaja, R.R.N.; Anantha, P.; Sampathkumaran, P.; Seetharamu, S. Mechanical and thermal characteristics of high density polyethylene-fly ash Cenospheres composites. Mater. Des. 2010, 31, 2051–2060. [Google Scholar] [CrossRef]
- Ahmad, I.; Prakash Mahanwar, A. Mechanical properties of fly ash filled high density polyethylene. J. Miner. Mater. Charact. Eng. 2010, 9, 183–198. [Google Scholar] [CrossRef]
- Sharma, A.K.; Prakash Mahanwar, A. Effect of particle size of fly ash on recycled poly (ethylene terephthalate)/fly ash composites. Int. J. Plast. Technol. 2010, 14, 53–56. [Google Scholar] [CrossRef]
- Anandhan, S.; MadhavaSundar, S.; Senthil, T.; Mahendran, A.R.; Shibulal, G.S. Extruded poly(ethylene-co-octene)/fly ash composites—Value added products from an environmental pollutant. J. Polym. Res. 2012, 19, 9840. [Google Scholar] [CrossRef]
- Satapathy, S.; Kothapalli, R.V. Influence of fly ash cenospheres on performance of coir fiber-reinforced recycled high-density polyethylene biocomposites. J. Appl. Polym. Sci. 2015, 132, 42237. [Google Scholar] [CrossRef]
- Yang, K.; Huang, Y.; Dong, J. Preparation of polypropylene/montmorillonite nanocomposites by intercalative polymerization: Effect of in situ polymer matrix functionalization on the stability of the nanocomposite structure. Chin. Sci. Bull. 2007, 52, 181–187. [Google Scholar] [CrossRef]
- Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T.C. Polypropylene/montmorillonite nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 2001, 13, 3516–3523. [Google Scholar] [CrossRef] [Green Version]
- Parton, H.; Baets, J.; Lipnik, P.; Goderis, B.; Devaux, J.; Verpoest, I. Properties of poly(butylene terephthalate) polymerized from cyclic oligomers and its composites. Polymer 2005, 46, 9871–9880. [Google Scholar] [CrossRef]
- Chiu, S.J.; Wu, Y.S. Acomparative study on thermal and catalytic degradation of polybutylene terephthalate. J. Anal. Appl. Pyrol. 2009, 86, 22–27. [Google Scholar] [CrossRef]
- Osswald, T.A.; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E. International Plastics Handbook; Hanser: Munich, Germany, 2006. [Google Scholar]
- Abdullah, S.A.; Frormann, L.; Saleem, A. Thermal and electrical conductivities of carbon fibers and carbon nanotubes incorporated polyurethanes composites. Key Eng. Mater. 2010, 442, 349–355. [Google Scholar] [CrossRef]
- Okoshi, M.; Nishizawa, H. Flame retardancy of nanocomposites. Fire Mater. 2004, 28, 423–429. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, M.; Wu, Y.; Lin, G.; Zhang, L. Effect of particle size on the properties of Mg(OH)2-filled rubber composites. J. Appl. Polym. Sci. 2004, 94, 2341–2346. [Google Scholar] [CrossRef]
- Morgan, A.B.; Cogen, J.M.; Opperman, R.S.; Harris, J.D. The effectiveness of magnesium carbonate-based flame retardants for poly(ethylene-co-vinyl acetate) and poly(ethylene-co-ethyl acrylate). Fire Mater. 2007, 31, 387–410. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Luo, Z.; Yang, B.; Guo, S.; Yu, J. Synergistic effects of expandable graphite with magnesium hydroxide on the flame retardancy and thermal properties of polypropylene. Polym. Eng. Sci. 2007, 47, 1756–1760. [Google Scholar] [CrossRef]
- Nitkiewicz, Z.; Sobczak, R.; Koszkul, J. Microstructure and X-ray diffraction of polypropylene and polypropylene with glass fibre. Composites 2001, 2, 127–130. [Google Scholar]
- Gwoździk, M.; Kulesza, S.; Bramowicz, M. Application of the fractal geometry methods for analysis of oxide layer. In Proceedings of the METAL 2017: 26th International Conference on Metallurgy and Materials, Ostrava, Czech Republic, 24–26 May 2017; pp. 789–794. [Google Scholar]
- Gwoździk, M.; Kulesza, S.; Bramowicz, M.; Bałaga, Z. Surface Morphology Analysis of Martensitic Stainless Steel after Different Treatments. Acta Phys. Pol. A 2019, 135, 157–161. [Google Scholar] [CrossRef]
- Gwoździk, M.; Bramowicz, M.; Kulesza, S. Surface morphology analysis of oxide layers formed on 10CrMo9-10 steel used in the power industry. Mater. Res. Express 2020, 7, 026544. [Google Scholar] [CrossRef]
- Gwoździk, M.; Bramowicz, M.; Kulesza, S. Evolution of the geometric structure of X39Cr13 steel upon thermochemical treatment specific to medical-grade steel. Lubricants 2022, 10, 114. [Google Scholar] [CrossRef]
- Yong, L.; Xunhua, S.; Shoudong, Z.; Shanling, H. A fractal crazing constitutive model of glassy polymers considering damage and toughening. Eng. Fract. Mech. 2022, 267, 108354. [Google Scholar]
- George, M.; Nziakou, Y.; Goerke, S.; Genix, A.C.; Bresson, B.; Roux, S.; Ciccotti, M. In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer. J. Mech. Phys. Solids 2018, 112, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Talu, S.; Luna, C.; Ahmadpourian, A.; Arman, A.; Naderi, S.; Ghobadi, N.; Stach, S.; Safibonad, B. Micromorphology and fractal analysis of nickel–carbon composite thin films. J. Mater. Sci. Mater. Electron. 2016, 27, 11425–11431. [Google Scholar] [CrossRef]
- Talu, S.; Morozov, I.A.; Yadav, R.P. Multifractal analysis of sputtered indium tin oxide thin film surfaces. Appl. Surf. Sci. 2019, 484, 892–898. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, D.; Zhang, X.; Tian, A. Surface profile topography of ionic polymer metal compositebased on fractal theory. Surf. Interfaces 2021, 22, 100834. [Google Scholar] [CrossRef]
- Habibi, M.; Mirzaei, S.; Arman, A.; Jurecka, S.; Sagedhi, M.; Zelati, A.; Shakoury, R.; Tanhaee, E.; Ghobadi, N.; Ehteram, H.; et al. Microstructure, fractal geometry and corrosion properties of CrN thin films: The effect of shot number and angular position. Mater. Today Commun. 2022, 32, 104072. [Google Scholar] [CrossRef]
- Dong, W.P.; Sullivan, P.J.; Stout, K.J. Comprehensive study of parameters for characterising three- dimensional surface topography: III: Parameters for characterising amplitude and some functional properties. Wear 1994, 178, 29–43. [Google Scholar] [CrossRef]
- Sayles, R.S.; Thomas, T.R. The spatial representation of surface roughness by means of the structure function: A practical alternative to correlation. Wear 1977, 42, 263–276. [Google Scholar] [CrossRef]
- Thomas, A.; Thomas, T.R. Digital analysis of very small scale surface roughness. J. Wave-Mater. Interact. 1988, 3, 341–350. [Google Scholar]
- Amjadi, M.; Fatemi, A. Tensile behavior of high-density polyethylene including the effects of processing technique, thickness, temperature, and strain rate. Polymers 2020, 12, 1857. [Google Scholar] [CrossRef]
- Saleh, M.; Al-Hajri, Z.; Popelka, A.; Zaidi, S.J. Preparation and characterization of alumina HDPE composites. Materials 2020, 13, 250. [Google Scholar] [CrossRef] [Green Version]
- Hamlaoui, O.; Klinkova, O.; Elleuch, R.; Tawfiq, I. Effect of the glass fiber content of a polybutylene terephthalate reinforced composite structure on physical and mechanical characteristics. Polymers 2022, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Borges Catarina, S.P.; Akhavan-Safar, A.; Marquez Eduardo, A.S.; Carbas Ricardo, J.C.; Ueffing, C.; Weißgraeber, P.; da Silva Lucas, F.M. Effect of water ingress on the mechanical and chemical properties of polybutylene terephthalate reinforced with glass fibers. Materials 2021, 14, 1261. [Google Scholar] [CrossRef] [PubMed]
Specimen | Phase Composition [% by Weight] |
---|---|
PE | HDPE 100% |
PE3M | HDPE 97% + 3% montmorillonite |
PE7M | HDPE 93% + 7% montmorillonite |
PBT | PBT 100% |
PBT3A | PBT 97% + 3% aluminum hydroxide |
PBT7A | PBT 93% + 7% aluminum hydroxide |
Specimen | Mean Shore Hardness Scale D [°Sh] | Hardness, Ball Indentation HB [MPa] |
---|---|---|
PE | 68 ± 4 | 95 ± 5 |
PE3M | 72 ± 6 | 102 ± 6 |
PE7M | 76 ± 9 | 105 ± 11 |
PBT | 90 ± 5 | 132 ± 7 |
PBT3A | 92 ± 9 | 136 ± 9 |
PBT7A | 96 ± 12 | 139 ± 13 |
Sq [nm] | Ymean [MPa] | Fadh [nN] | dmean [nm] | Str | D | τ [nm] | |
---|---|---|---|---|---|---|---|
PE | 2.23 | 582 ± 125 | 1.57 ± 0.14 | 18 | 0.26 | 2.40 | 59.7 |
PE3M | 2.35 | 454 ± 96 | 2.06 ± 0.21 | 13 | 0.51 | 2.42 | 58.3 |
PE7M | 2.82 | 582 ± 117 | 1.81 ± 0.27 | 15 | 0.25 | 2.39 | 76.1 |
PBT | 2.77 | 782 ± 247 | 2.16 ± 0.21 | 20 | 0.31 | 2.46 | 78.7 |
PBT3A | 6.93 | 1114 ± 576 | 3.43 ± 1.18 | - | 0.38 | 2.47 | 73.6 |
PBT7A | 6.47 | 437 ± 141 | 1.68 ± 0.40 | - | 0.12 | 2.33 | 50.3 |
Sq [nm] | Ymean [MPa] | Fadh [nN] | dmean [nm] | Str | D | τ [nm] | |
---|---|---|---|---|---|---|---|
PE | 6.28 | 171 ± 58 | 1.14 ± 0.30 | 16 | 0.73 | 2.42 | 69.4 |
PE3M | 5.05 | 616 ± 191 | 2.22 ± 0.47 | 21 | 0.37 | 2.39 | 63.8 |
PE7M | 4.53 | 397 ± 140 | 1.21 ± 0.21 | 17 | 0.52 | 2.41 | 63.3 |
PBT | 3.08 | 241 ± 86 | 1.14 ± 0.15 | 16 | 0.46 | 2.44 | 52.0 |
PBT3A | 8.16 | 292 ± 68 | 1.31 ± 0.19 | 54 | 0.58 | 2.39 | 51.8 |
PBT7A | 2.57 | 470 ± 109 | 1.91 ± 0.29 | 18 | 0.56 | 2.37/2.59 | 10.7/105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bałaga, Z.; Gnatowski, A.; Kulesza, S.; Bramowicz, M.; Gwoździk, M. AFM Measurements and Testing Properties of HDPE and PBT Composites with Fillers in the Form of Montmorillonite and Aluminum Hydroxide. Materials 2022, 15, 8738. https://doi.org/10.3390/ma15248738
Bałaga Z, Gnatowski A, Kulesza S, Bramowicz M, Gwoździk M. AFM Measurements and Testing Properties of HDPE and PBT Composites with Fillers in the Form of Montmorillonite and Aluminum Hydroxide. Materials. 2022; 15(24):8738. https://doi.org/10.3390/ma15248738
Chicago/Turabian StyleBałaga, Zbigniew, Adam Gnatowski, Sławomir Kulesza, Mirosław Bramowicz, and Monika Gwoździk. 2022. "AFM Measurements and Testing Properties of HDPE and PBT Composites with Fillers in the Form of Montmorillonite and Aluminum Hydroxide" Materials 15, no. 24: 8738. https://doi.org/10.3390/ma15248738
APA StyleBałaga, Z., Gnatowski, A., Kulesza, S., Bramowicz, M., & Gwoździk, M. (2022). AFM Measurements and Testing Properties of HDPE and PBT Composites with Fillers in the Form of Montmorillonite and Aluminum Hydroxide. Materials, 15(24), 8738. https://doi.org/10.3390/ma15248738