Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Material Characterisation
3. Results and Discussions
4. Conclusions
- The Al-Cu rolling sheets show poor interfacial bonding. A heterogeneous structure can be observed with discrete cracks and defects at the interface of the Al-Cu layers. With an increased number of cycles of the annealing–hot rolling of the multilayer Al-Cu composite, this becomes a more homogeneous structure.
- The rolling reduction has a significant effect on the deformation of Al-Cu hot-rolled sheets. The deformation of each layer was analyzed. Severe deformation by hot rolling leads to better bonding. As the number of severe hot rolling increases, diffusion occurs, and a better bond between them is obtained.
- The stress–strain curve indicates that the fracture appears first in the Al layer.
- The elongation to failure was increased after the first two cycles of annealing and hot rolling up to 23% (first break of aluminum) and was increased at 34% (second break).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, M.; Li, Z.; Liu, B.; Chen, C.; Yu, W.; Yang, B.; Yin, F. Interface strengthening and toughening mechanism of hot rolled multilayer TWIP/40Si2CrMo Steels. Crystals 2022, 12, 1367. [Google Scholar] [CrossRef]
- Cao, M.; Wang, C.-J.; Deng, K.-K.; Nie, K.-B. Effect of interface on the deep drawability of Ti/Al multilayered composites. Metals 2021, 11, 795. [Google Scholar] [CrossRef]
- Wachowski, M.; Kosturek, R.; Śnieżek, L.; Mróz, S.; Stefanik, A.; Szota, P. The effect of post-weld hot-rolling on the properties of explosively eelded Mg/Al/Ti multilayer composite. Materials 2020, 13, 1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Li, X.; Xiong, B.; Li, Z.; Zhang, Y.; Yan, L.; Wen, K.; Yan, H. Dynamic response characteristic of 7N01/7A01/7050 aluminium multilayer plate at high strain rate. Prog. Nat. Sci. Mater. Int. 2021, 31, 159–163. [Google Scholar] [CrossRef]
- Sas-Boca, I.M.; Tintelecan, M.; Iluțiu-Varvara, D.A.; Pop, M.; Frunza, D.; Popa, F. Research on the mechanical properties of C45/S235JR multilayer steel systems. Procedia Manuf. 2019, 32, 8–14. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Walsh, F.C.; Zangari, G.; Köçkar, H.; Alper, M.; Rizal, C.; Magagnin, L.; Protsenko, V.; Arunachalam, R.; Rezvanian, A.; et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications. Appl. Surf. Sci. Adv. 2021, 6, 100141. [Google Scholar] [CrossRef]
- Seleznev, M.; Kaden, N.; Renzing, C.; Schmidtchen, M.; Prahl, U.; Biermann, H.; Weidner, A. Microstructural evolution of the bonding zone in TRIP-TWIP laminate produced by accumulative roll bonding. Mater. Sci. Eng. A 2022, 840, 142866. [Google Scholar] [CrossRef]
- Avallone, J.T.; Nizolek, T.J.; Bales, B.B.; Pollock, T.M. Creep resistance of bulk copper–niobium composites: An inverse effect of multilayer length scale. Acta Mater. 2019, 176, 189–198. [Google Scholar] [CrossRef]
- Mahdavian, M.M.; Khatami-Hamedani, H.; Abedi, H.R. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J. Alloys Compd. 2017, 703, 605–613. [Google Scholar] [CrossRef]
- Ramkumar, K.R.; Natarajan, S. Effects of TiO2 nanoparticles on the microstructural evolution and mechanical properties on accumulative roll bonded Al nanocomposites. J. Alloys Compd. 2019, 793, 526–532. [Google Scholar] [CrossRef]
- Eizadjou, M.; Kazemi Talachi, A.; Danesh Manesh, H.; Shakur Shahabi, H.; Janghorban, K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos. Sci. Technol. 2008, 68, 2003–2009. [Google Scholar] [CrossRef]
- Topic, I.; Höppel, H.W.; Göken, M. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016. Mater. Sci. Eng. A 2009, 503, 163–166. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lin, C.Y.; Lin, Y.F.; Tsukagoshi, K. Two-dimensional MoTe2 materials: From synthesis, identification, and charge transport to electronics applications. Jpn. J. Appl. Phys. 2016, 55, 1102A1. [Google Scholar] [CrossRef]
- Kim, H.J.; Osada, M.; Sasaki, T. Advanced capacitor technology based on two-dimensional nanosheets. Jpn. J. Appl. Phys. 2016, 55, 1102A3. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Liu, H.; Lin, G.; Zhang, R.; Du, P.; Li, G. Effects of long-time annealing on the microstructures and shear tensile strengths of diffusion-bonded FeCrAl/N18 clad plates. Nucl. Mater. Energy 2022, 32, 101207. [Google Scholar] [CrossRef]
- Li, Z.; Rezaei, S.; Wang, T.; Han, J.; Shu, X.; Pater, Z.; Huang, Q. Recent advances and trends in roll bonding process and bonding model: A review. Chin. J. Aeronaut. 2022. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Zhou, Z.; Mo, T.; Wang, P.; He, W. Microstructure evolution, mechanical properties and tailoring of coefficient of thermal expansion for Cu/Mo/Cu clad sheets fabricated by hot rolling. Trans. Nonferrous Met. Soc. China 2022, 32, 2290–2308. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Z.; Huang, H.; Lin, J.; Li, B.; Liu, Q. Fabrication of Ti/Al/Mg laminated composites by hot roll bonding and their microstructures and mechanical properties. Chin. J. Aeronaut. 2021, 34, 92–201. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Q.; Jia, Y.Z.; Zhang, B.; Jing, R.; Jing, M.Z.; Ma, Q.; Liu, R.P. Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Mater. Sci. Eng. A 2012, 547, 120–124. [Google Scholar] [CrossRef]
- Chekhonin, P.; Zöllner, D.; Zimmer, E.; Scharnweber, J.; Romberg, J.; Skrotzki, W. Microstructure of accumulative roll bonded high purity aluminium laminates. Materialia 2019, 5, 100236. [Google Scholar] [CrossRef]
- McCabe, R.J.; Nizolek, T.J.; Li, N.; Zhang, Y.; Coughlin, D.R.; Miller, C.; Carpenter, J.S. Evolution of microstructures and properties leading to layer instabilities during accumulative roll bonding of FeCu, FeAg, and FeAl. Mater. Des. 2021, 212, 110204. [Google Scholar] [CrossRef]
- Zhang, L.F.; Gao, R.; Zhao, B.L.; Sun, M.; Jing, K.; Wang, X.P.; Hao, T.; Xie, Z.M.; Liu, R.; Fang, Q.F.; et al. Effects of annealing temperature and layer thickness on hardening behavior in cross accumulative roll bonded Cu/Fe nanolamellar composite. J. Alloys Compd. 2020, 827, 154312. [Google Scholar] [CrossRef]
- Sun, Y.; Rong, Z.; Guan, S. Surface solid-state amorphization of accumulative roll bonded Cu-Zr laminates by friction stir processing. Mater. Lett. 2020, 279, 128518. [Google Scholar] [CrossRef]
- Mehr, V.Y.; Toroghinejad, M.R.; Rezaeian, A.; Asgari, H.; Szpunar, J.A. Abnormal texture evolution of accumulative roll bonded Al–Cu by adding alumina particles. Heliyon 2022, 8, e08723. [Google Scholar] [CrossRef]
- Jawad, D.H.; Hosseinzadeh, A.; Yapici, G.G. Effect of layer architecture on the mechanical behavior of accumulative roll bonded interstitial free steel/aluminum composites. Mater. Sci. Eng. A 2021, 818, 141387. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, S.E.; Sung, H.K.; Lee, D.H.; Kim, J.S.; Chang, Y.W.; Lee, S.; Kwon, Y.N. Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets. Mater. Sci. Eng. A 2013, 583, 177–181. [Google Scholar] [CrossRef]
- Kim, I.-K.; Hong, S.I. Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites. Mater. Des. 2013, 49, 935–944. [Google Scholar] [CrossRef]
- Kocich, R.; Macháčková, A.; Kunčická, L.; Fojtík, F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015, 71, 36–47. [Google Scholar] [CrossRef]
- Li, X.-B.; Zu, G.-Y.; Wang, P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans. Nonferrous Met. Soc. China 2015, 25, 36–45. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, H.; Yu, H.; Qi, Z.C.; Xu, C. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater. Sci. Eng. A 2017, 695, 120–125. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Saboori, A.; Khalaj, G.; Khanzadeh Ghareh Shiran, M. Microstructural Evolutions and its Impact on the Corrosion Behaviour of Explosively Welded Al/Cu Bimetal. Metals 2020, 10, 634. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Liu, G.; Li, C.; Wang, Q.; Jiang, H.; Ding, W.; Su, F.; Shang, Z. Characteristic investigation of trilayered Cu/Al8011/Al1060 composite: Interface morphology, microstructure, and in-situ tensile deformation. Prog. Nat. Sci. Mater. Int. 2021, 31, 679–687. [Google Scholar] [CrossRef]
- Mo, T.; Xiao, H.; Lin, B.; Li, W.; Ma, K. The influence of interface effect on the microstructure and mechanical behavior of tri-metal Ti/Al/Cu laminated metal composites. J. Mater. Res. Technol. 2022, 19, 520–531. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Huang, H.-G.; Sun, J.-N.; Zhao, R.-D.; Feng, M. Interfacial pressure distribution and bonding characteristics in twin-roll casting of Cu/Al clad strip. Trans. Nonferrous Met. Soc. China 2022, 32, 2965–2978. [Google Scholar] [CrossRef]
- Liu, T.; Song, B.; Huang, G.; Jiang, X.; Guo, S.; Zheng, K.; Pan, F. Preparation, structure and properties of Mg/Al laminated metal composites fabricated by roll-bonding, a review. J. Magnes. Alloys 2022, 10, 2062–2093. [Google Scholar] [CrossRef]
- Shayanpoor, A.A.; Rezaei Ashtiani, H.R. Microstructural and mechanical investigations of powder reinforced interface layer of hot extruded Al/Cu bimetallic composite rods. J. Manuf. Processes 2022, 77, 313–328. [Google Scholar] [CrossRef]
- Venugopal, S.; Seeman, M.; Seetharaman, R.; Jayaseelan, V. The effect of bonding process parameters on the microstructure and mechanical properties of AA5083 diffusion-bonded joints. Int. J. Lightweight Mater. Manuf. 2022, 5, 555–563. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, Z.; Dong, X.; Song, G.; Liu, L. A novel post-weld composite treatment process for improving the mechanical properties of AA 6061-T6 aluminum alloy welded joints. J. Manuf. Processes 2022, 82, 15–22. [Google Scholar] [CrossRef]
- EN 573-3:2019+A1:2022; Aluminium and aluminium alloys—Chemical composition and form of wrought products—Part 3: Chemical composition and form of products. British Standards Institution: London, UK, 2022.
- EN 755-2:2008; Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties. British Standards Institution: London, UK, 2016.
- EN 1652:1997/AC:2003; Copper and copper alloys—Plate, sheet, strip and circles for general purposes. British Standards Institution: London, UK, 2003.
- EN 13601:2021; Copper and copper alloys—Copper rod, bar and wire for general electrical purposes. British Standards Institution: London, UK, 2021.
- Callister, W.D., Jr.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 10th ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 250–360. [Google Scholar]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Other | Al |
---|---|---|---|---|---|---|---|---|---|
0.3–0.6 | 0.1–0.3 | 0.10 | 0.10 | 0.35–0.6 | 0.05 | 0.15 | 0.1 | 0.05 | Remainder |
Cu | O | Si | Bi | Pb | Other Elements |
---|---|---|---|---|---|
99.90 | 0.040 | maximum 0.015 | 0.0005 | 0.005 | Remainder |
Temper A50 (%) | Wall Thickness, e (mm) | Yield Stress Rp0.2 (MPa) | Tensile Strength, Rm (MPa) | Elongation | Hardness (HB) | |
---|---|---|---|---|---|---|
A (%) | A50 (%) | |||||
T6 | <5 | 150 | 190 | 8 | 6 | 65 |
Material | Tensile Strength, Rm (MPa) | 0.2% Proof Strength Rp0.2 (MPa) | Elongation | Hardness | ||
---|---|---|---|---|---|---|
A100 mm (%) | A (%) | Brinell HBW | Vickers HV | |||
R250 ½ Hard | 250 | minimum 180 | 8 | 12 | 65–90 | 70–95 |
Area Spectrum No. | Al (wt.%) | Cu (wt.%) | Possible Phases |
---|---|---|---|
13 | 99.2 | 0.8 | Cu(α) + Al(α) |
14 | 81.4 | 18.6 | Cu + Al2Cu + Al5Cu8 |
15 | 92.6 | 7.4 | Cu + Al2Cu + Al5Cu8 |
16 | 53.6 | 46.4 | Al2Cu + Al9Cu11 |
17 | 93 | 7 | Cu + Al2Cu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sas-Boca, I.-M.; Iluțiu-Varvara, D.-A.; Tintelecan, M.; Aciu, C.; Frunzӑ, D.I.; Popa, F. Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite. Materials 2022, 15, 8807. https://doi.org/10.3390/ma15248807
Sas-Boca I-M, Iluțiu-Varvara D-A, Tintelecan M, Aciu C, Frunzӑ DI, Popa F. Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite. Materials. 2022; 15(24):8807. https://doi.org/10.3390/ma15248807
Chicago/Turabian StyleSas-Boca, Ioana-Monica, Dana-Adriana Iluțiu-Varvara, Marius Tintelecan, Claudiu Aciu, Dan Ioan Frunzӑ, and Florin Popa. 2022. "Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite" Materials 15, no. 24: 8807. https://doi.org/10.3390/ma15248807
APA StyleSas-Boca, I. -M., Iluțiu-Varvara, D. -A., Tintelecan, M., Aciu, C., Frunzӑ, D. I., & Popa, F. (2022). Studies on Hot-Rolling Bonding of the Al-Cu Bimetallic Composite. Materials, 15(24), 8807. https://doi.org/10.3390/ma15248807