Thermoelectric, Electrochemical, & Dielectric Properties of Four ZnO Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZnO Nanostructures and Photoanode
2.3. Preparation of Electrolyte
2.4. Material Characterization
3. Results
3.1. Cyclic Voltammetry Analysis
3.2. Thermoelectric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhi-gang, J.; Kuan-Kuan, P.; Yan-Hua, L.; Rong-sun, Z. Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag. Trans. Nonferrous Met. Soc. China 2012, 22, 873–878. [Google Scholar]
- Anh, T.V.; Pham, T.A.T.; Mac, V.H.; Nguyen, T.H. Facile Controlling of the Physical Properties of Zinc Oxide and Its Application to Enhanced Photocatalysis. J. Anal. Methods Chem. 2021, 2021, 5533734. [Google Scholar] [CrossRef]
- Thangeeswari, T.; George, A.T.; Kumar, A.A. Optical Properties and FTIR Studies of Cobalt Doped ZnO Nanoparticles by Simple Solution Method. Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. Nanostructures of zinc oxide. Mater. Today 2004, 7, 26–33. [Google Scholar]
- Topoglidis, E.; Cass, A.E.G.; O’Regan, B.; Durrant, J.R. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 2001, 517, 20–27. [Google Scholar] [CrossRef]
- Cheng, X.L.; Zhao, H.; Huo, L.H.; Gao, S.; Zhao, J.G. ZnO nanoparticulate thin film: Preparation, characterization and gas-sensing property. Sens. Actuators B 2004, 102, 248–252. [Google Scholar] [CrossRef]
- Rathnasekara, R.; Hari, P. Enhancing the Efficiency of Dye-Sensitized Solar Cells (DSSCs) by Nanostructured Ag-doped ZnO Electrodes. ChemistrySelect 2022, 7, e202200830. [Google Scholar]
- Das, S.; Ghorai, U.K.; Dey, R.; Ghosh, C.K.; Pal, M. White light phosphorescence from ZnO nanoparticles for white LED applications. New J. Chem. 2022, 46, 17585–17595. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, H.; Xiao, W.; Sun, L. Filter Paper Inspired Zinc Oxide Nanomaterials with High Photocatalytic Activity for Degradation of Methylene Orange. J. Chem. 2016, 2016, 2862567. [Google Scholar]
- El-Gendy, A.O.; Nawaf, K.T.; Ahmed, E.; Samir, A.; Hamblin, M.R.; Hassan, M.; Mohamed, T. Preparation of zinc oxide nanoparticles using the laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with a femtosecond laser. J. Photochem. Photobiol. B Biol. 2022, 234, 112540. [Google Scholar]
- Virtudazo, R.V.R.; Srinivasan, B.; Guo, Q.; Wu, R.; Takei, T.; Shimasaki, Y.; Wada, H.; Kuroda, K.; Bernik, S.; Mori, T. Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructures materials synthesized via an alternative interfacial reaction and low-pressure SPS processing. Inorg. Chem. Front. 2020, 7, 4118–4132. [Google Scholar]
- Koumoto, K.; Wang, Y.; Zhang, R.; Kosuga, A.; Funahashi, R. Oxide Thermoelectric Materials: A Nanostructuring Approach. Annu. Rev. Mater. Res. 2010, 40, 363–394. [Google Scholar] [CrossRef]
- Ohtaki, M.; Tsubota, T.; Eguchi, K.; Arai, H. High–temperature Thermoelectric Properties of (Zn1-x Alx)O. J. Appl. Phys. 1996, 79, 1816–1818. [Google Scholar]
- Koumoto, K.; Funahashi, R.; Guilmeau, E.; Miyazaki, Y.; Weidenkaff, A.; Wang, Y.; Wan, C. Thermoelectric Ceramics for Energy Harvesting. J. Am. Ceram. Soc. 2013, 96, 1–23. [Google Scholar]
- Guilmeau, E.; Díaz-Chao, P.; Lebedev, O.I.; Rečnik, A.; Schäfer, M.C.; Delorme, F.; Giovannelli, F.; Kosir, M.; Bernik, S. Inversion Boundaries and Phonon Scattering in Ga:ZnO Thermoelectric Compounds. Inorg. Chem. 2017, 56, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Michie, Y.; Nishijima, H.; Suzuki, Y.; Mori, T. Synthesis and Thermoelectric Properties of Composite Oxides in the Pseudobinary System ZnO-Ga2O3. Solid State Sci. 2017, 65, 29–32. [Google Scholar]
- Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric Properties of Al-Doped ZnO as a Promising Oxide Material for High-Temperature Thermoelectric Conversion. J. Mater. Chem. 1997, 7, 85–90. [Google Scholar] [CrossRef]
- Srivastava, R. Investigation on temperature sensing of nanostructured Zinc Oxide synthesized via oxalate route. J. Sens. Technol. 2012, 2, 8–12. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357, 1369. [Google Scholar]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric Materials and Applications for Energy Harvesting Power Generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef]
- Michie, Y.; Mori, T.; Prytuliak, A.; Matsushita, Y.; Tanaka, M.; Kimizuka, N. Electrical, optical, thermoelectric properties of Ga2O3(ZnO)9. RSC Adv. 2011, 1, 1788–1793. [Google Scholar] [CrossRef]
- Cai, Z.; Guo, L.; Xu, X.; Yan, Y.; Peng, K.; Wang, G.; Wang, G.; Zhou, X. Effect of Sn Doping in (Bi0.25Sb0.75)2−x Sn x Te3 (0 ≤ x ≤ 0.1) on Thermoelectric Performance. J. Electron. Mater. 2016, 45, 1441–1446. [Google Scholar] [CrossRef]
- Heremans, J.; Dresselhaus, M.S. Low Dimensional Thermoelectricity. Acta Phys. Pol. A 2005, 108, 609–634. [Google Scholar]
- Yang, J. Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry. In Proceedings of the IEEE 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005. [Google Scholar]
- Liu, Y.; Liu, Z.; Shi, Y. Sensitive determination of epinephrine in pharmaceutical preparation by flow injection coupled with chemiluminescence detection and mechanism study. Luminescence 2011, 26, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Abood, E.S.; Jouda, A.M.; Mashkoor, M.S. Zinc Metal at a New ZnO Nanoparticles Modified Carbon Paste Electrode: A Cyclic Voltammetric Study. Nano Biomed. Eng. 2018, 10, 149–155. [Google Scholar] [CrossRef]
- Pradhan, P.; Mascarenhas, R.J.; Thomas, T.; Namboothiri, I.N.N.; D’Souza, O.J.; Mekhalif, Z. Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples. J. Electroanal. Chem. 2014, 732, 30–37. [Google Scholar] [CrossRef]
- Al-Ibrahim, M.; Roth, H.K.; Schroeder, M.; Konkin, A.; Zhokhavets, U.; Gobsch, G.; Scharff, P.; Sensfuss, S. The influence of the optoelectronic properties of poly(3-alkyIthiophenes) on the device parameters in flexible polymer solar cells. Org. Electron. 2005, 6, 65–77. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar]
- Cho, N.; Schlenker, C.W.; Knesting, K.M.; Koelsch, P.; Yip, H.-L.; Ginger, D.S.; Jen, A.K.-Y. High-Dielectric Constant Side-Chain Polymers Show Reduced Non-Geminate Recombination in Heterojunction Solar Cells. Adv. Energy Mater. 2014, 4, 1301857. [Google Scholar] [CrossRef]
- Roy, S.; Maity, A.; Mandal, P.; Chanda, D.K.; Pal, K.; Bardhan, S.; Das, S. Effects of various morphologies on the optical and electrical properties of boehmite nanostructures. CrystEngComm 2018, 20, 6338–6350. [Google Scholar] [CrossRef]
- Dakin, T.W. Conduction and Polarization Mechanisms and Trends in Dielectrics. IEEE Electr. Insul. Mag. 2006, 22, 11–28. [Google Scholar]
- Rathnasekara, R.; Hari, P. Impedance spectroscopy of nanostructured ZnO morphologies. J. Mater. Res. 2021, 36, 1937–1947. [Google Scholar] [CrossRef]
- Cheng, A.-J.; Tzeng, Y.; Zhou, Y.; Park, M.; Wu, T.-H.; Shannon, C.; Wang, D.; Lee, W. Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Appl. Phys. Lett. 2008, 92, 092113. [Google Scholar]
- Mukhamedshina, D.; Mit’, K.; Chuchvara, N.; Tokmoldin, N. Fabrication, and study of sol-gel ZnO films for use in Si-based heterojunction photovoltaic devices. Mod. Electron. Mater. 2017, 3, 158–161. [Google Scholar] [CrossRef]
- Mahmood, N.B.; Saeed, F.R.; Gbashi, K.R.; Mahmood, U.-S. Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method. Mater. Lett. X 2022, 13, 100126. [Google Scholar]
- Kong, X.Y.; Wang, Z.L. Spontaneous Polarization-Induced Nanohelixes, Nano springs, and Nanorings of Piezoelectric Nanobelts. Nano Lett. 2003, 3, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Areerob, Y.; Hamontree, C.; Sricharoen, P.; Limchoowong, N.; Nijpanich, S.; Nachaithong, T.; Oh, W.-C.; Pattarith, K. Synthesis of novel MoWO4 with ZnO nanoflowers on multi-walled carbon nanotubes for counter electrode application in the dye-sensitized solar cell. Sci. Rep. 2022, 12, 12490. [Google Scholar] [PubMed]
- Liu, Y.; Zhang, J.; Li, G.; Liu, J.; Liang, O.; Wang, H.; Zhu, Y.; Gao, J.; Lu, H. In2O3-ZnO nanotubes for the sensitive and selective detection of ppb-level NO2 under UV irradiation at room temperature. Sens. Actuators B Chem. 2022, 355, 131322. [Google Scholar] [CrossRef]
- Doustkhah, E.; Esmat, M.; Fukata, N.; Ide, Y.; Hanaor, D.A.H.; Assadi, M.H.N. MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemoshere 2022, 303, 134932. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Pervez, M.F.; Mia, M.N.H.; Mortuza, A.A.; Rahaman, M.S.; Karim, M.R.; Islam, J.M.M.; Ahmed, F.; Khan, M.A. Effect of dye extracting solvents and sensitization time on the photovoltaic performance of the natural dye-sensitized solar cell. Results Phys. 2017, 7, 1516–1523. [Google Scholar] [CrossRef]
- Kordzadeh, A.; De Zanche, N. Permittivity Measurement of Liquids, Powders, and Suspensions Using a Parallel-Plate Cell. Concepts Magn. Reson. Part B 2016, 46, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yao, Y.; Ma, X.; Huang, C.; Liu, Z.; Yu, H.; Wang, M.; Zhang, Q.; Li, X.; Chen, S.; et al. Light absorption and efficiency enhancements for organic photovoltaic devices with Au@PSS core-shell tetrahedra. Org. Electron. 2018, 61, 96–103. [Google Scholar] [CrossRef]
- Ahamad, I.; Ahmed, E.; Ullah, M.; Rana, A.M.; Manzoor, M.F.; Rasheed, M.A.; Malik, A.S.; Khad, N.R.; Ahmad, M.; Mehtab, U. Synthesis and Characterization of Silver Doped ZnO Nanoparticles for Hydrogen Production. J. Ovonic Res. 2018, 14, 415–427. [Google Scholar]
- MMR Technologies: SB1000 Digital Seebeck Controller. Available online: http://yiqi-oss.oss-cn-hangzhou.aliyuncs.com/aliyun/900103339/goods_img/256760.pdf (accessed on 2 December 2022).
- Mustafa, F.; Razwan, M.; Shabbir, S. Microstructure and resistivity analysis of silver nanoparticles-based crystalline conductivity films synthesized using PEG surfactant. Processes 2019, 7, 245. [Google Scholar]
- Joshi, D.P.; Sen, K. Effect of Grain Size on the Resistivity of Polycrystalline Material. Sol. Cells 1983, 9, 261–267. [Google Scholar] [CrossRef]
- Ozmihci, F.O.; Balkose, D. Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low-density Polyethylene-Zinc Oxide composites. J. Appl. Polym. Sci. 2013, 130, 2734–2743. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Minnich, A.J.; Chen, G.; Ren, Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 2010, 20, 357–376. [Google Scholar] [CrossRef]
- Moreno, J.J.G.; Cao, J.; Fronzi, M.; Assadi, M.H.N. A review of recent progress in thermoelectric materials through computational methods. Mater. Renew. Sustain. Energy 2020, 9, 16. [Google Scholar]
- Shi, L.; Hao, Q.; Yu, C.; Mingo, N.; Kong, X.; Wang, Z.L. Thermal conductivities of individual tin dioxide nanobelts. J. Appl. Phys. Lett. 2004, 84, 2638–2640. [Google Scholar]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar]
- Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 86, 2934–2936. [Google Scholar] [CrossRef]
- Kulkarni, A.J.; Zhou, M. Size-dependent thermal conductivity of Zinc Oxide nanobelts. Appl. Phys. Lett. 2006, 88, 141921. [Google Scholar] [CrossRef]
- Díaz-Chao, P.; Giovannelli, F.; Lebedev, O.; Chateigner, D.; Lutterotti, L.; Delorme, F.; Guilmeau, E. Textured Al-doped ZnO ceramics with isotropic grains. J. Eur. Ceram. Soc. 2014, 34, 4247–4256. [Google Scholar]
- Zhao, Y.; Chen, B.; Miner, A.; Priya, S. Low thermal conductivity of Al-doped ZnO with layered and correlated grains. RSC Adv. 2014, 4, 18370–18377. [Google Scholar] [CrossRef]
- Berman, R.; Foster, E.L.; Ziman, J.M. Thermal conduction in artificial sapphire crystals at low temperatures I. Nearly perfect crystals. Proc. R. Soc. Lond. Ser. A 1955, 231, 130–144. [Google Scholar]
- Tufail, M.; Rahman, A.U.; Gul, B.; Akram, W.; Ullah, H.; Iqbal, M.W.; Ramay, S.M.; Shah, W.H. Effect of Pb doping on electronic and thermoelectric properties of thallium antimony telluride (Tl8.33Sb1.67-xPbxTe6) nano-compound: A combined experimental and theoretical investigations. Physica B 2021, 608, 412789. [Google Scholar]
- Teubner, J. Optimization of High-Efficiency Thermoelectrics Based on Tl5Te3. Master’s Thesis, University of Konstanz, Konstanz, Germany, 2001. [Google Scholar]
- Sakellis, I. Determining the activiation volumes in ZnO. J. Appl. Phys. 2012, 112, 013504. [Google Scholar] [CrossRef]
- Moon, B.; Jun, N.; Park, S.; Seok, C.-S.; Hong, U. A Study on the Modified Arrhenius Equation Using the Oxygen Permeation Block Model of Crosslink Structure. Polymers 2019, 11, 136. [Google Scholar]
- Holm, S. Time domain characterization of the Cole-Cole dielectric model. J. Electr. Bioimpedance 2020, 11, 101–105. [Google Scholar]
Optical Filters Color | Wavelength (nm) |
---|---|
Blue | 493 |
Green | 518 |
Yellow | 572 |
Orange | 595 |
Red | 628 |
Nanostructure Name | Optical Filters Wavelength (nm) | Bandgap (eV) | ||
---|---|---|---|---|
Nanoribbons | 493 | −7.36 | −4.03 | 3.34 |
518 | −7.33 | −4.06 | 3.27 | |
572 | −7.31 | −4.06 | 3.25 | |
595 | −7.29 | −4.09 | 3.20 | |
628 | −7.24 | −4.14 | 3.10 | |
493 | −6.98 | −3.84 | 3.14 | |
518 | −6.83 | −3.83 | 3.00 | |
Nanorods | 572 | −6.86 | −3.86 | 3.00 |
595 | −6.86 | −3.88 | 2.98 | |
628 | −6.81 | −3.90 | 2.91 | |
493 | −7.31 | −3.91 | 3.40 | |
518 | −7.30 | −3.93 | 3.37 | |
Nanoparticles | 572 | −7.30 | −3.96 | 3.34 |
595 | −7.30 | −4.02 | 3.28 | |
628 | −7.28 | −4.12 | 3.16 | |
Nanoshuttles | 493 | −7.17 | −3.86 | 3.31 |
518 | −7.13 | −3.88 | 3.25 | |
572 | −7.09 | −3.88 | 3.21 | |
595 | −7.06 | −3.90 | 3.16 | |
628 | −6.93 | −3.91 | 3.02 |
Morphology | ||||
---|---|---|---|---|
Nanoribbons | 1.21 | 2.01 | 1.21 | 2.11 |
Nanorods | 2.02 | 5.21 | 4.66 | 6.53 |
Morphology | |||||||
---|---|---|---|---|---|---|---|
Nanoparticles | 1.42 | 2.08 | 4.68 | ||||
Nanoshuttles | 1.15 | 3.20 | 9.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathnasekara, R.; Mayberry, G.; Hari, P. Thermoelectric, Electrochemical, & Dielectric Properties of Four ZnO Nanostructures. Materials 2022, 15, 8816. https://doi.org/10.3390/ma15248816
Rathnasekara R, Mayberry G, Hari P. Thermoelectric, Electrochemical, & Dielectric Properties of Four ZnO Nanostructures. Materials. 2022; 15(24):8816. https://doi.org/10.3390/ma15248816
Chicago/Turabian StyleRathnasekara, Rusiri, Grant Mayberry, and Parameswar Hari. 2022. "Thermoelectric, Electrochemical, & Dielectric Properties of Four ZnO Nanostructures" Materials 15, no. 24: 8816. https://doi.org/10.3390/ma15248816
APA StyleRathnasekara, R., Mayberry, G., & Hari, P. (2022). Thermoelectric, Electrochemical, & Dielectric Properties of Four ZnO Nanostructures. Materials, 15(24), 8816. https://doi.org/10.3390/ma15248816