A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent
Abstract
:1. Introduction
2. Concerned Radionuclides with Associated Health Hazards
3. Different Removal Techniques
4. Performance Comparison of Different Adsorbents
5. Synthesis Process of Activated Carbon and Influential Factors
- Activating agents: Activating agents play significant roles in the activation process, and various utilized chemicals react differently depending on the type of biomass and the employed temperatures. Under high thermal conditions, the reactivity of chemical activating agents with biomass materials produces an intermolecular reaction that results in efficient AC production. Numerous activating chemicals have been widely used to produce activated carbon with the required pore structure. The objective of the activation process is to generate and expand (volume and size) porosity in the carbon material, enhancing its adsorptive ability. To produce activated carbon, the lignocellulosic precursor is mainly impregnated or physically mixed with a chemical agent, such as H3PO4, H2SO4, HNO3, NaOH, KOH or ZnCl2 [181].
- Holding time and heating speed: The holding time significantly impacts activated carbon’s removal efficiency and adsorption capacity. In 2017, Sun et al. [184] found that metronidazole elimination efficiency is 91% after 60 min, climbing to 98% at 120 min and remaining stable. According to the findings published by Shaaban et al. [185], a more extended holding period leads to the creation of well-defined pores in biochar and an increase in BET surface area. During pyrolysis, rapid heating generates macroporous residue. Low-speed heating ramps are often used to prepare activated carbon. This method permits the complete combustion of material precursors and enhances the development of porosity [186].
- Activation temperature: The activation temperature substantially affects the pore structure and adsorption properties of AC. Lan et al. [187] discovered that, when activation temperature increases, the iodine adsorption value first climbs and then falls, and the yield continuously decreases. The best temperature range for the activation procedure is 900 °C to 1000 °C. The highest values for specific surface area and pore volume are 636.91 m2 g−1 and 0.363 cm3 g−1, respectively.
- Carbonization temperature: The influence of carbonization temperature on activated carbon removal efficiency and adsorption capacity is substantial. Osman Unera and Yuksel Bayrak [188] found that, when the carbonization temperature is raised from 300 to 400 °C, the AC surface areas increase; however, the AC surface areas again decrease at over 400 °C. Carbonization temperature and time significantly impact the pore structure of activated carbon. It is connected to the increased density of activated carbon [189].
- Nitrogen flow: The adsorption characteristics are interestingly affected by gas flow, especially nitrogen flow. In 2007, Stavropoulos et al. [190] found that adding nitrogen to activated carbon promotes the formation of a microporous structure. Thermal treatment of activated carbon in a urea-saturated gas flow mainly produces microporous samples with large pore volumes. Nitrogen functionality enhances the phenol adsorption capability of raw activated carbon.
- Steam flow: Steam flow is most considerable in the physical activation method. In 2018, Bergna et al. [191] showed that the steam flow rate dramatically impacts the yield and the total carbon and oxygen contents. Steam flow and holding duration have similar effects on pore size distribution, with increased responses and a greater impact on mesopore production (0.054 to 0.156 cm3 g−1).
- Mass ratio of precursors and activating agents: This results in less chemical agent use and better excess removal during the carbon washing process. The impact of increasing the fraction of impregnation over the porous carbon structure is more significant than that of increasing the carbonizing temperature [192].
- Raw materials: Activated carbon is made from various carbonaceous compounds derived from animals, plants, minerals, anthracite, petroleum coke, coal and lignocellulosic waste products, such as wood, walnut shells, coconuts or almonds [193]. Although any carbonaceous substance may be suited to be a promising adsorbent, it must fulfill certain criteria to be utilized commercially. These requirements include availability, cost and the production of compatible activated carbon for all applications. The material’s composition determines the quality of the adsorbent.
- Structure of activated carbon: The adsorption capacity of activated carbon is strongly influenced by its structures, such as its porous structure, crystalline structure and chemical structure [194]. The activation procedure eliminates disordered carbon by exposing the crystallites to the activating chemical, forming a porous structure. According to Prahas et al. [195], the high adsorptive capacities of activated carbon are strongly correlated with porous properties such as surface area, pore volume and pore size distribution.
6. Potential Biomass Sources for Activated Carbon Production
7. Surface Properties and Adsorption Capacity of Biomass-Derived AC
8. Adsorption Isotherm Models
8.1. Langmuir Model
8.2. Freundlich Model
8.3. Temkin Model
9. Adsorption Kinetic Model
9.1. Pseudo-First-Order Kinetic Model
9.2. Pseudo-Second-Order Kinetic Model
10. Mechanism of Enhancing Adsorption Performance
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaworowski, Z. Environmental protection Natural and man-made radionuclides in the global atmosphere. IAEA Bull. 1982, 24, 35–39. [Google Scholar]
- Reza Najem, G.; Voyce, L.K. Health effects of a thorium waste disposal site. Am. J. Public Health 1990, 80, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuccetelli, C.; Rusconi, R.; Forte, M. Radioactivity in drinking water: Regulations, monitoring results and radiation protection issues. Ann. Ist. Super. Sanita 2012, 48, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Artioli, Y. Adsorption. In Encyclopedia of Ecology; Academic Press: Oxford, UK, 2008; pp. 60–65. [Google Scholar] [CrossRef]
- Canner, A.J.; Pepper, S.E.; Hayer, M.; Ogden, M.D. Removal of radionuclides from a HCl steel decontamination stream using chelating ion exchange resins—Initial studies. Prog. Nucl. Energy 2018, 104, 271–279. [Google Scholar] [CrossRef]
- Clifford, D.; Vijeswarapu, W.; Subramonian, S. Evaluating Various Adsorbents and Membranes for Removing Radium From Groundwater. J. Am. Water Work. Assoc. 1988, 80, 94–104. [Google Scholar] [CrossRef]
- Kim, K.J.; Kang, S.; Shon, J.S.; Hong, K.P. Treatment of Organic Radioactive Wastes by Evaporation Utilizing DU Oxidation Apparatus. In Proceedings of the Korean Nuclear Society Conference, Busan, Korea, 27–28 October 2005. [Google Scholar]
- Osmanlioglu, A.E. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl. Eng. Technol. 2018, 50, 886–889. [Google Scholar] [CrossRef]
- Miśkiewicz, A.; Nowak, A.; Pałka, J.; Zakrzewska-Kołtuniewicz, G. Liquid Low-Level Radioactive Waste Treatment Using an Electrodialysis Process. Membranes 2021, 11, 324. [Google Scholar] [CrossRef]
- Rajendran, S.; Shahbaz, K.; Walvekar, R. A fundamental study on solubility of heavy metal oxides in ammonium and phosphonium based deep eutectic solvents. J. Eng. Sci. Technol. 2016, 11, 82–96. [Google Scholar]
- USEPA. Wastewater Technology Fact Sheet Dechlorination; United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Zoumpoulis, A.; Karapantsios, T.; Matis, K.; Lazaridis, N. Heavy metals removal from industrial wastewaters by biosorption. Int. J. Environ. Pollut. 2010, 1, 57–78. [Google Scholar]
- How Much Does an Ion Exchange System Cost? Available online: https://www.samcotech.com/how-much-ion-exchange-system-cost/ (accessed on 13 May 2022).
- Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Colloid Interface Sci. 2011, 163, 39–52. [Google Scholar] [CrossRef]
- Mumpton, F.A. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmalin Sophia, A.; Lima, E.C.; Allaudeen, N.; Rajan, S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater—A review. Desalination Water Treat. 2016, 57, 27573–27586. [Google Scholar] [CrossRef]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 2018, 20, 132–142. [Google Scholar] [CrossRef]
- Perot, G.; Guisnet, M. Advantages and disadvantages of zeolites as catalysts in organic chemistry. J. Mol. Catal. 1990, 61, 173–196. [Google Scholar] [CrossRef]
- Duan, J.; Pan, Y.; Liu, G.; Jin, W. Metal-organic framework adsorbents and membranes for separation applications. Curr. Opin. Chem. Eng. 2018, 20, 122–131. [Google Scholar] [CrossRef]
- Haso, H.W.; Dubale, A.A.; Chimdesa, M.A.; Atlabachew, M. High Performance Copper Based Metal Organic Framework for Removal of Heavy Metals From Wastewater. Front. Mater. 2022, 9, 60. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, X.; Liu, Y.; Zhou, P.; Ma, G.; Lei, Z.; Lei, L. A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. J. Taiwan Inst. Chem. Eng. 2015, 49, 206–211. [Google Scholar] [CrossRef]
- Khalili, N.R.; Vyas, J.D.; Weangkaew, W.; Westfall, S.J.; Parulekar, S.J.; Sherwood, R. Synthesis and characterization of activated carbon and bioactive adsorbent produced from paper mill sludge. Sep. Purif. Technol. 2002, 26, 295–304. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, H.; Wu, W.; Ali Bacar, M.; Wang, Q.; Gao, M.; Wu, C.; Xia, C.; Qian, D. Conversion of liquor brewing wastewater into medium chain fatty acids by microbial electrosynthesis: Effect of cathode potential and CO2 supply. Fuel 2023, 332, 126046. [Google Scholar] [CrossRef]
- Wei, L.; Deng, W.; Li, S.; Wu, Z.; Cai, J.; Luo, J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022, 7, 63–72. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Chai, Y.H.; Ismail, I.S.; Othman, M.F.H.; Yusup, S. Biomass as activated carbon precursor and potential in supercapacitor applications. Biomass Convers. Biorefinery 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Yalçin, N.; Sevinç, V. Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon 2000, 38, 1943–1945. [Google Scholar] [CrossRef]
- Hayakawa, S.; Matsubara, S.; Sumi, Y.; Yamamoto, S.; Kawamura, N.; Nonami, T. Caesium and strontium adsorption ability of activated bamboo charcoal. Int. J. Nanotechnol. 2018, 15, 683–688. [Google Scholar] [CrossRef]
- El-Din, A.M.S.; Monir, T.; Sayed, M.A. Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ. Sci. Pollut. Res. 2019, 26, 25550–25563. [Google Scholar] [CrossRef]
- Njewa, J.B.; Vunain, E.; Biswick, T. Synthesis and Characterization of Activated Carbons Prepared from Agro-Wastes by Chemical Activation. J. Chem. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Caccin, M.; Giacobbo, F.; Da Ros, M.; Besozzi, L.; Mariani, M. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J. Radioanal. Nucl. Chem. 2012, 297, 9–18. [Google Scholar] [CrossRef]
- Pal, A.; Thu, K.; Mitra, S.; El-Sharkawy, I.I.; Saha, B.B.; Kil, H.-S.; Yoon, S.-H.; Miyawaki, J. Study on biomass derived activated carbons for adsorptive heat pump application. Int. J. Heat Mass Transf. 2017, 110, 7–19. [Google Scholar] [CrossRef]
- Pal, A.; Uddin, K.; Thu, K.; Saha, B.B.; Kil, H.-S.; Yoon, S.-H.; Miyawaki, J. Thermophysical and Adsorption Characteristics of Waste Biomass-Derived Activated Carbons. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 617–628. [Google Scholar] [CrossRef]
- Pal, A.; Uddin, K.; Saha, B.B.; Thu, K.; Kil, H.-S.; Yoon, S.-H.; Miyawaki, J. A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons. Appl. Energy 2020, 264, 114720. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shenashen, M.A.; Hasan, M.M.; Znad, H.; Awual, M.R. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 2021, 270, 128668. [Google Scholar] [CrossRef]
- Pal, A.; Rocky, K.A.; Saha, B.B. Thermodynamic analysis of promising biomass-derived activated carbons/CO2based adsorption cooling systems. J. CO2 Util. 2021, 46, 101457. [Google Scholar] [CrossRef]
- Pal, A.; Uddin, K.; Thu, K.; Saha, B.B.; Kil, H.-S.; Yoon, S.-H.; Miyawaki, J. Synthesis of High Grade Activated Carbons From Waste Biomass. Encycl. Renew. Sustain. Mater. 2020, 4, 584–595. [Google Scholar] [CrossRef]
- Hossain, F. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. J. Environ. Radioact. 2020, 225, 106423. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, C.S.; North Atlantic Treaty Organization, Scientific Affairs Division; NATO Advanced Research Workshop. Atmospheric Nuclear Tests: Environmental and Human Consequences; Springer: Berlin/Heidelberg, Germany, 1998; p. 280. [Google Scholar]
- Sharma, H.; Gaur, P.; Gupta, D.; Rajpurohit, V. Common sources of radiations in a medical environment. Int. J. Res. Med. Sci. 2021, 9, 3485. [Google Scholar] [CrossRef]
- Radioisotopes in Industry | Industrial Uses of Radioisotopes—World Nuclear Association. Available online: https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx (accessed on 12 July 2022).
- Yim, M.S. Radiation hazards from the nuclear fuel cycle. In Advanced Security and Safeguarding in the Nuclear Power Industry, State of the Art and Future Challenges; Academic Press: Cambridge, MA, USA, 2020; pp. 49–79. [Google Scholar] [CrossRef]
- Radioactive Waste from Uranium Mining and Milling | US EPA. Available online: https://www.epa.gov/radtown/radioactive-waste-uranium-mining-and-milling (accessed on 18 August 2022).
- Hu, Q.H.; Weng, J.Q.; Wang, J.S. Sources of anthropogenic radionuclides in the environment: A review. J. Environ. Radioact. 2010, 101, 426–437. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Idham, M.F.; Sugihara, Y.; Eljamal, O. Radionuclides Removal from Aqueous Solutions: A Mini Review on Using Different Sorbents. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2021, 7, 170–177. [Google Scholar] [CrossRef]
- Types of Radioactivity: Alpha, Beta, and Gamma Decay—Chemistry LibreTexts. Available online: https://chem.libretexts.org/Courses/can/intro/Radioactivity_and_Nuclear_Chemistry/Types_of_Radioactivity_Alpha_Beta_and_Gamma_Decay (accessed on 19 May 2022).
- Radiation: Ionizing Radiation. Available online: https://www.who.int/news-room/questions-and-answers/item/radiation-ionizing-radiation (accessed on 19 August 2022).
- The International Atomic Energy Agency (IAEA). Inhalation Risks from Radioactive Contaminants; The International Atomic Energy Agency (IAEA): Vienna, Austria, 1973. [Google Scholar]
- USNRC. Chapter 1 Fundamentals. In Tractate Berakhot; De Gruyter: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Potential Human Health Effects of Uranium Mining, Processing, and Reclamation. 19 December 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK201047/ (accessed on 19 August 2022).
- Penetration Abilities of Different Types of Radiation. Available online: https://www.cdc.gov/training/products/RN/page4976.html (accessed on 19 August 2022).
- Tawn, E.J.; Rees, G.S.; Leith, C.; Winther, J.F.; Curwen, G.B.; Stovall, M.; Olsen, J.H.; Rechnitzer, C.; Schroeder, H.; Guldberg, P.; et al. Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation. Int. J. Radiat. Biol. 2011, 87, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Bunin, G.R.; Felice, M.A.; Davidson, W.; Friedman, D.L.; Shields, C.L.; Maidment, A.; O’Shea, M.; Nichols, K.E.; Leahey, A.; Dunkel, I.J.; et al. Medical radiation exposure and risk of retinoblastoma resulting from new germline RB1 mutation. Int. J. Cancer 2011, 128, 2393. [Google Scholar] [CrossRef] [Green Version]
- Uranium Toxicity: What Are the Physiological Effects of Uranium Exposure? | Environmental Medicine | ATSDR. Available online: https://www.atsdr.cdc.gov/csem/uranium/physiological_effects.html (accessed on 19 August 2022).
- Kinsley, M. The Radiochemistry of Cesium; The National Academies Press: Washington, DC, USA, 1961; pp. 3–9. [Google Scholar] [CrossRef]
- CDC Radiation Emergencies|Radioactive Isotopes. Available online: https://www.cdc.gov/nceh/radiation/emergencies/isotopes/index.htm (accessed on 24 November 2021).
- Half Lives Explained. Available online: https://dec.alaska.gov/eh/radiation/half-lives-explained/ (accessed on 3 May 2022).
- Oh, J.-R.; Ahn, B.-C. False-positive uptake on radioiodine whole-body scintigraphy: Physiologic and pathologic variants unrelated to thyroid cancer. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 362–385. [Google Scholar]
- Zinc, Isotope of Mass 65 | Zn—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Zinc_-isotope-of-mass-65 (accessed on 19 May 2022).
- Zinc (Zn)—Chemical Properties, Health and Environmental Effects. Available online: https://www.lenntech.com/periodic/elements/zn.htm (accessed on 24 November 2021).
- Biological Half-Life. Available online: http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/biohalf.html (accessed on 3 May 2022).
- Radionuclide Basics: Radon | US EPA. Available online: https://www.epa.gov/radiation/radionuclide-basics-radon (accessed on 28 January 2022).
- Radon Symptoms: Signs of Radon Poisoning & Exposure. Available online: https://www.nationalradondefense.com/radon-information/radon-symptoms.html (accessed on 28 January 2022).
- Strontium-90 Half-Life, Properties, Beta-Decay, Uses. Available online: https://www.chemistrylearner.com/strontium-90.html (accessed on 24 November 2021).
- Uranium-238 Atomic Number, Fission, Decay, Half-Life, Uses. Available online: https://www.chemistrylearner.com/uranium-238.html (accessed on 24 November 2021).
- Properties of Cobalt-60—Radioactive Isotopes. Available online: https://radioactiveisotopes.weebly.com/properties-of-cobalt-60.html (accessed on 24 November 2021).
- Nagao, S. Radionuclides released from nuclear accidents: Distribution and dynamics in soil. In Environmental Remediation Technologies for Metal-Contaminated Soils; Springer: Tokyo, Japan, 2015; pp. 43–65. [Google Scholar] [CrossRef]
- Three Mile Island Nuclear Accident—Chemistry LibreTexts. Available online: https://chem.libretexts.org/Courses/Furman_University/CHM101_Chemistry_and_Global_Awareness_(Gordon)_Nuclear_Energy_Three_Mile_Island_Nuclear_Accident (accessed on 19 August 2022).
- The Chernobyl Accident. Available online: https://www.unscear.org/unscear/en/areas-of-work/chernobyl.html (accessed on 19 August 2022).
- A Quick Read on the Radioactive Water in Fukushima—What Makes It Different?—Greenpeace East Asia. Available online: https://www.greenpeace.org/eastasia/blog/6540/a-quick-read-on-the-radioactive-water-in-fukushima-what-makes-it-different/ (accessed on 3 May 2022).
- Steam Requirement for Evaporation. Available online: https://www.msubbu.in/sp/pc/EvaporatorSteam.htm (accessed on 27 January 2022).
- Yang, H.; Luo, M.; Luo, L.; Wang, H.; Hu, D.; Lin, J.; Wang, X.; Wang, Y.; Wang, S.; Bu, X.; et al. Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy. Chem. Mater. 2016, 28, 8774–8780. [Google Scholar] [CrossRef]
- Marinin, D.V.; Brown, G.N. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manag. 2000, 20, 545–553. [Google Scholar] [CrossRef]
- Qasem, N.; Mohammed, R.; Lawal, D. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Ion-exchange membrane systems—Electrodialysis and other electromembrane processes. In Fundamental Modelling of Membrane Systems, Membrane and Process Performance; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–300. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Conforti, K.M.; Gao, T.; Tian, H.; Bazant, M.Z. Continuous Separation of Radionuclides from Contaminated Water by Shock Electrodialysis. Environ. Sci. Technol. 2019, 54, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Removal of Cesium from Radioactive Wastewater Using ELECTRODIALYSIS(ED). Available online: https://www.researchgate.net/publication/322918748_Removal_of_cesium_from_radioactive_wastewater_using_ELECTRODIALYSISED (accessed on 13 July 2022).
- Mahmoudi, H. Water Desalination in Electrodialysis Applications. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1986–1987. [Google Scholar] [CrossRef]
- Radium Removal Technologies for Potable Groundwater Systems | WaterWorld. Available online: https://www.waterworld.com/home/article/16197264/radium-removal-technologies-for-potable-groundwater-systems (accessed on 8 May 2022).
- Ding, S.; Yang, Y.; Li, C.; Huang, H.; Hou, L.A. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res. 2016, 95, 174–184. [Google Scholar] [CrossRef]
- Membrane Filters: Want an Easy Way to Get Drinking Water—Axiva Sichem Biotech. Available online: https://axivasichembiotech.wordpress.com/2018/03/27/membrane-filters-want-an-easy-way-to-get-drinking-water/ (accessed on 5 May 2022).
- Mollah, A.S.; Begum, A.; Rahman, M.M. Removal of radionuclides from low level radioactive liquid waste by precipitation. J. Radioanal. Nucl. Chem. 1998, 229, 187–189. [Google Scholar] [CrossRef]
- Bobrov, P.A.; Slyunchev, O.M.; Semenova, T.A. Radionuclide removal from radioactively contaminated drainage water and groundwater by precipitation and sorption methods. Radiochemistry 2015, 57, 537–541. [Google Scholar] [CrossRef]
- Figure 4: A Simple Schematic of the Chemical Precipitation Process. | npj Clean Water. Available online: https://www.nature.com/articles/s41545-021-00127-0/figures/4 (accessed on 27 January 2022).
- Rudi, N.N.; Muhamad, M.S.; Te Chuan, L.; Alipal, J.; Omar, S.; Hamidon, N.; Abdul Hamid, N.H.; Mohamed Sunar, N.; Ali, R.; Harun, H. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon 2020, 6, e05049. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G. Potential Applications of Nanomaterials in Wastewater Treatment. In Advanced Treatment Techniques for Industrial Wastewater; IGI Global: Hershey, PA, USA, 2018; pp. 51–61. [Google Scholar] [CrossRef] [Green Version]
- Noble, T. Operational Costs of Evaporation Rinse Water Recycling Data Compiled. Available online: http://www.jdnoble.com/docs/interactive/aqueoustech/rwr-evap/evap-rwr-pps.ppsx (accessed on 6 May 2022).
- Pirsaheb, M.; Khosravi, T.; Sharafi, K.; Moradi, M. Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalination Water Treat. 2016, 57, 5391–5397. [Google Scholar] [CrossRef]
- Pillai, S.B. Adsorption in Water and Used Water Purification. In Handbook of Water and Used Water Purification; Springer: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Hansdah, B. Adsorption of Methylene Blue and Phenol on Activated Carbon Prepared from Fox Nutshell by K2CO3 Activator. Master’s Thesis, National Institute of Technology, Rourkela, India, 2016. [Google Scholar]
- Kheddo, A.; Rhyman, L.; Elzagheid, M.I.; Jeetah, P.; Ramasami, P. Adsorption of synthetic dyed wastewater using activated carbon from rice husk. SN Appl. Sci. 2020, 2, 2170. [Google Scholar] [CrossRef]
- GRAPHENE Your Window to the Future Application Highlight. Available online: www.quantachome.com (accessed on 19 May 2022).
- Perreault, F.; De Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef]
- Jun, L.Y.; Mubarak, N.M.; Yee, M.J.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem. 2018, 67, 175–186. [Google Scholar] [CrossRef]
- CATC Technical Bulletin. CATC Technical Bulletin. Choosing an Adsorption System for VOC: Carbon, Zeolite or Polymers? 1999; p. 32. Available online: http://www.epa.gov/ttn/catc (accessed on 19 May 2022).
- Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour. Ind. 2018, 19, 35–46. [Google Scholar] [CrossRef]
- Xiao-Teng, Z.; Dong-Mei, J.; Yi-Qun, X.; Jun-Chang, C.; Shuai, H.; Liang-Shu, X. Adsorption of Uranium(VI) from Aqueous Solution by Modified Rice Stem. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Eljamal, O.; Shubair, T.; Tahara, A.; Sugihara, Y.; Matsunaga, N. Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. J. Mol. Liq. 2019, 277, 613–623. [Google Scholar] [CrossRef]
- Yavari, R.; Huang, Y.D.; Mostofizadeh, A. Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J. Radioanal. Nucl. Chem. 2010, 285, 703–710. [Google Scholar] [CrossRef]
- Adibmehr, M.; Faghihian, H. Magnetized Activated Carbon Prepared by Oak Shell Biowaste and Modified with Nickel Hexacyanoferrate for Selective Removal of Cesium. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1941–1955. [Google Scholar] [CrossRef]
- Kiener, J.; Limousy, L.; Jeguirim, M.; Meins, J.M.L.; Hajjar-Garreau, S.; Bigoin, G.; Ghimbeu, C.M. Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption. Materials 2019, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Kaçan, E.; Kütahyali, C. Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J. Anal. Appl. Pyrolysis 2012, 97, 149–157. [Google Scholar] [CrossRef]
- Suliman, M.H.; Siddiqui, M.N.; Basheer, C. Surface functionalization of mesoporous carbon for the enhanced removal of strontium and cesium radionuclides. Coatings 2020, 10, 923. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Kumar, P.S.; Revellame, E.D.; Gang, D.D.; Zappi, M.E.; Subramaniam, R. Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J. Clean. Prod. 2018, 193, 1–13. [Google Scholar] [CrossRef]
- Sadighzadeh, A.; Gourani, M.; Mizani, F. Effect of impregnating materials in activated carbon on Iodine -131 (131 I) removal efficiency. Radiat. Prot. Environ. 2014, 37, 179. [Google Scholar] [CrossRef]
- Jha, P.K.; Jha, V.K. Iodine adsorption characteristics of activated carbon obtained from spinacia oleracea (Spinach) leaves. Mong. J. Chem. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A. Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol. 2008, 99, 8441–8444. [Google Scholar] [CrossRef] [PubMed]
- Kütahyali, C.; Eral, M. Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep. Purif. Technol. 2004, 40, 109–114. [Google Scholar] [CrossRef]
- Saleh, T.A.; Naeemullah; Tuzen, M.; Sarı, A. Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem. Eng. Res. Des. 2017, 117, 218–227. [Google Scholar] [CrossRef]
- Bernabé, I.; Gómez, J.M.; Díez, E.; Sáez, P.; Rodríguez, A. Optimization and Adsorption-Based Recovery of Cobalt Using Activated Disordered Mesoporous Carbons. Adv. Mater. Sci. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, E. Adsorption of cobalt(II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorpt. Sci. Technol. 2003, 21, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Kaddour, S.; Trari, M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 2014, 20, 745–751. [Google Scholar] [CrossRef]
- Khandaker, S.; Toyohara, Y.; Saha, G.C.; Awual, M.R.; Kuba, T. Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J. Water Process Eng. 2020, 33, 101055. [Google Scholar] [CrossRef]
- Shubair, T.; Eljamal, O.; Tahara, A.; Sugihara, Y.; Matsunaga, N. Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters. J. Mol. Liq. 2019, 288, 111026. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Hu, S.; Zhang, X.; Luo, X. Core-shell zeolite@Alg-Ca particles for removal of strontium from aqueous solutions. RSC Adv. 2016, 6, 73959–73973. [Google Scholar] [CrossRef]
- Warchoł, J.; Misaelides, P.; Petrus, R.; Zamboulis, D. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mater. 2006, 137, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y. Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nat. Commun. 2021, 12, 4483. [Google Scholar] [CrossRef] [PubMed]
- Tauanov, Z.; Inglezakis, V.J. Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolites. Sci. Total Environ. 2019, 682, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Camacho, L.M.; Deng, S.; Parra, R.R. Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration. J. Hazard. Mater. 2010, 175, 393–398. [Google Scholar] [CrossRef]
- Han, R.; Zou, W.; Wang, Y.; Zhu, L. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 2007, 93, 127–143. [Google Scholar] [CrossRef]
- Godelitsas, A.; Misaelides, P.; Filippidis, A.; Charistos, D.; Anousis, I. Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals. J. Radioanal. Nucl. Chem. 1996, 208, 393–402. [Google Scholar] [CrossRef]
- Rodríguez, A.; Sáez, P.; Díez, E.; Gómez, J.M.; García, J.; Bernabé, I. Highly efficient low-cost zeolite for cobalt removal from aqueous solutions: Characterization and performance. Environ. Prog. Sustain. Energy 2019, 38, S352–S365. [Google Scholar] [CrossRef]
- Solache-Ríos, M.; Olguín, M.T.; Martínez-Miranda, V.; Ramírez-García, J.; Zárate-Montoya, N. Removal Behavior of Cobalt from Aqueous Solutions by a Sodium-Modified Zeolitic Tuff. Water Air Soil Pollut. 2015, 226, 420. [Google Scholar] [CrossRef]
- Dwairi, R.; Al-Rawajfeh, A.E. Removal of cobalt and nickel from wastewater by using jordan low-cost zeolite and bentonite. J. Univ. Chem. Technol. Metall. 2012, 47, 69–76. [Google Scholar]
- Xing, M.; Zhuang, S.; Wang, J. Efficient removal of Cs(I) from aqueous solution using graphene oxide. Prog. Nucl. Energy 2020, 119, 103167. [Google Scholar] [CrossRef]
- Yang, H.; Li, H.; Zhai, J.; Sun, L.; Zhao, Y.; Yu, H. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J. 2014, 246, 10–19. [Google Scholar] [CrossRef]
- Basu, H.; Saha, S.; Pimple, M.V.; Singhal, R.K. Graphene-prussian blue nanocomposite impregnated in alginate for efficient removal of cesium from aquatic environment. J. Environ. Chem. Eng. 2018, 6, 4399–4407. [Google Scholar] [CrossRef]
- Xing, M.; Zhuang, S.; Wang, J. Adsorptive removal of strontium ions from aqueous solution by graphene oxide. Environ. Sci. Pollut. Res. 2019, 26, 29669–29678. [Google Scholar] [CrossRef]
- Abu-Nada, A.; Abdala, A.; McKay, G. Isotherm and kinetic modeling of strontium adsorption on graphene oxide. Nanomaterials 2021, 11, 2780. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Luo, M.; Meng, M.; Ni, L.; Qiu, J.; Hu, Z.; Liu, F.; Zhong, G.; Liu, Z.; et al. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution. J. Mater. Chem. A 2015, 3, 1287–1297. [Google Scholar] [CrossRef]
- Suksompong, T.; Thongmee, S.; Sudprasert, W. Efficacy of a graphene oxide/chitosan sponge for removal of radioactive iodine-131 from aqueous solutions. Life 2021, 11, 721. [Google Scholar] [CrossRef]
- Sun, H.; Mu, P.; Xie, H.; Zhu, Z.; Liang, W.; Zhou, Z.; Li, A. Efficient Capture and Reversible Storage of Radioactive Iodine by Porous Graphene with High Uptake. ChemistrySelect 2018, 3, 10147–10152. [Google Scholar] [CrossRef]
- Han, S.; Um, W.; Kim, W.S. Development of bismuth-functionalized graphene oxide to remove radioactive iodine. Dalton Trans. 2019, 48, 478–485. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, D.; Chen, S.; Wang, X.; Chen, C. One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J. Colloid Interface Sci. 2016, 472, 99–107. [Google Scholar] [CrossRef]
- He, Y.R.; Li, S.C.; Li, X.L.; Yang, Y.; Tang, A.M.; Du, L.; Tan, Z.Y.; Zhang, D.; Chen, H.B. Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution. Chem. Eng. J. 2018, 338, 333–340. [Google Scholar] [CrossRef]
- Fang, F.; Kong, L.; Huang, J.; Wu, S.; Zhang, K.; Wang, X.; Sun, B.; Jin, Z.; Wang, J.; Huang, X.J.; et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J. Hazard. Mater. 2014, 270, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Hu, J.; Zhao, Y.; Shao, D.; Li, J. Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv. 2013, 3, 9514–9521. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, J. Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ. Prog. Sustain. Energy 2019, 38, S32–S41. [Google Scholar] [CrossRef]
- Yavari, R.; Huang, Y.D.; Ahmadi, S.J. Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes. J. Radioanal. Nucl. Chem. 2011, 287, 393–401. [Google Scholar] [CrossRef]
- Jang, J.; Miran, W.; Lee, D.S. Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution. J. Radioanal. Nucl. Chem. 2018, 316, 691–701. [Google Scholar] [CrossRef]
- Li, T.; He, F.; Dai, Y.D. Prussian blue analog caged in chitosan surface-decorated carbon nanotubes for removal cesium and strontium. J. Radioanal. Nucl. Chem. 2016, 310, 1139–1145. [Google Scholar] [CrossRef]
- Ali, S.; Shah, I.A.; Huang, H. Selectivity of Ar/O2 plasma-treated carbon nanotube membranes for Sr(II) and Cs(I) in water and wastewater: Fit-for-purpose water treatment. Sep. Purif. Technol. 2020, 237, 116352. [Google Scholar] [CrossRef]
- Chen, C.; Hu, J.; Shao, D.; Li, J.; Wang, X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 2009, 164, 923–928. [Google Scholar] [CrossRef]
- Hayakawa, C.; Urita, K.; Ohba, T.; Kanoh, H.; Kaneko, K. Physico-Chemical Properties of Iodine-Adsorbed Single-Walled Carbon Nanotubes. Langmuir 2009, 25, 1795–1799. [Google Scholar] [CrossRef]
- Yılmaz, D.; Gürol, A. Efficient removal of iodine-131 from radioactive waste by nanomaterials. Instrum. Sci. Technol. 2021, 49, 45–54. [Google Scholar] [CrossRef]
- Pishko, A.L.; Serkiz, S.M.; Zeigler, K.E.; Rao, A.M. Removal and sequestration of iodide from alkaline solutions using silver- doped carbon nanotubes. J. South Carol. Acad. Sci. 2011, 9, 37–42. [Google Scholar]
- Zhuang, S.; Wang, J. Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution. J. Mol. Liq. 2020, 319, 114288. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, L.; Le, Z.; Wang, Y.; Liu, Z.; Huang, G.; Adesina, A.A. Preparation of porous chitosan/carboxylated carbon nanotube composite aerogels for the efficient removal of uranium(VI) from aqueous solution. Int. J. Biol. Macromol. 2020, 160, 1000–1008. [Google Scholar] [CrossRef]
- Abdeen, Z.; Akl, Z.F. Uranium(VI) adsorption from aqueous solutions using poly(vinyl alcohol)/carbon nanotube composites. RSC Adv. 2015, 5, 74220–74229. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Chen, C.; Ren, X.; Hu, J.; Wang, X. Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J. 2011, 174, 126–133. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.; Sillanpää, M. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 2020, 299, 112154. [Google Scholar] [CrossRef]
- Karkeh-abadi, F.; Saber-Samandari, S.; Saber-Samandari, S. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions. J. Hazard. Mater. 2016, 312, 224–233. [Google Scholar] [CrossRef]
- Asgari, P.; Mousavi, S.H.; Aghayan, H.; Ghasemi, H.; Yousefi, T. Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions. Microchem. J. 2019, 150, 10418. [Google Scholar] [CrossRef]
- Naeimi, S.; Faghihian, H. Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep. Purif. Technol. 2017, 175, 255–265. [Google Scholar] [CrossRef]
- Choi, J.W.; Park, Y.J.; Choi, S.J. Synthesis of Metal-Organic Framework ZnO x-MOF@MnO2 Composites for Selective Removal of Strontium Ions from Aqueous Solutions. ACS Omega 2020, 5, 8721–8729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Kong, X.; Shao, X.; Ji, Y. Synthesis of DtBuCH18C6-coated magnetic metal-organic framework Fe3O4@UiO-66-NH2 for strontium adsorption. J. Environ. Chem. Eng. 2019, 7, 103073. [Google Scholar] [CrossRef]
- Zhao, X.; Han, X.; Li, Z.; Huang, H.; Liu, D.; Zhong, C. Enhanced removal of iodide from water induced by a metal-incorporated porous metal-organic framework. Appl. Surf. Sci. 2015, 351, 760–764. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, Q.; Wang, Y.Y.; Jiang, L.; Jiang, J.; Qiu, J. A pillared double-wall metal-organic framework adsorption membrane for the efficient removal of iodine from solution. Sep. Purif. Technol. 2021, 274, 118436. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Z.; Zhu, L.; Zhang, L.; Cai, Y.; Li, Y.; Liu, W.; Wang, Y.; Chen, L.; Diwu, J.; et al. Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal-Organic Framework. ACS Appl. Mater. Interfaces 2017, 9, 32446–32451. [Google Scholar] [CrossRef]
- Fotovat, H.; Khajeh, M.; Oveisi, A.R.; Ghaffari-Moghaddam, M.; Daliran, S. A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Microchim. Acta 2018, 185, 469. [Google Scholar] [CrossRef]
- Yang, F.; Xie, S.; Wang, G.; Yu, C.W.; Liu, H.; Liu, Y. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 20246–20258. [Google Scholar] [CrossRef]
- Yuan, G.; Tian, Y.; Liu, J.; Tu, H.; Liao, J.; Yang, J.; Yang, Y.; Wang, D.; Liu, N. Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution. Chem. Eng. J. 2017, 326, 691–699. [Google Scholar] [CrossRef]
- Shahriyari Far, H.; Hasanzadeh, M.; Najafi, M.; Rabbani, M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal-Organic Framework/Activated Carbon Composites. Ind. Eng. Chem. Res. 2021, 60, 4332–4341. [Google Scholar] [CrossRef]
- Yuan, G.; Tu, H.; Liu, J.; Zhao, C.; Liao, J.; Yang, Y.; Yang, J.; Liu, N. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem. Eng. J. 2018, 333, 280–288. [Google Scholar] [CrossRef]
- Oubagaranadin, J. Murthy Activated Carbons: Classifications, Properties and Applications. Available online: https://www.researchgate.net/publication/285933645_Activated_carbons_Classifications_properties_and_applications (accessed on 14 July 2022).
- Sinha, P.; Banerjee, S.; Kar, K.K. Characteristics of Activated Carbon. Springer Ser. Mater. Sci. 2020, 300, 125–154. [Google Scholar] [CrossRef]
- Kyotani, T. Porous Carbon. In Carbon Alloys, Novel Concepts to Develop Carbon Science and Technology; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 109–127. [Google Scholar] [CrossRef]
- Çeçen, F.; Aktaş, Ö. Water and Wastewater Treatment: Historical Perspective of Activated Carbon Adsorption and its Integration with Biological Processes. In Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; Wiley: Weinheim, Germany, 2011; pp. 1–11. [Google Scholar] [CrossRef]
- Xia, J.; Marthi, R.; Twinney, J.; Ghahreman, A. A review on adsorption mechanism of gold cyanide complex onto activation carbon. J. Ind. Eng. Chem. 2022, 111, 35–42. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, A.; Zhao, Y. Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J. Air Waste Manag. Assoc. 2018, 68, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.Y.; Egiebor, N.O. A comprehensive review on physical activation of biochar for energy and environmental applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Lussier, M.G.; Zhang, Z.; Miller, D.J. Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen. Carbon 1998, 36, 1361–1369. [Google Scholar] [CrossRef]
- Aworn, A.; Thiravetyan, P.; Nakbanpote, W. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores. J. Anal. Appl. Pyrolysis 2008, 82, 279–285. [Google Scholar] [CrossRef]
- Le Van, K.; Luong Thi, T.T. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog. Nat. Sci. Mater. Int. 2014, 24, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Kuti, I.A.; Adabembe, B.A.; Adeoye, P.A.; Musa, J.J.; Animashaun, I.M.; Issa, M.S.; Ogunwole, M.O. Production and characterization of bamboo activated carbon using different chemical impregnations for heavy metals removal production and characterization of bamboo activated carbon using different chemical impregnations for heavy metals. Niger. Res. J. Eng. Environ. Sci. 2018, 3, 177–182. [Google Scholar]
- Ismail, I.S.; Rashidi, N.A.; Yusup, S. Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ. Sci. Pollut. Res. 2022, 29, 12434–12440. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Juang, R.S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. J. Taiwan Inst. Chem. Eng. 2017, 71, 214–234. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Masoudi Soltani, S. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Lewoyehu, M. Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. J. Anal. Appl. Pyrolysis 2021, 159, 105279. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Activation Processes (Chemical). In Activated Carbon; Elsevier Science: Amsterdam, The Netherlands, 2006; pp. 322–365. [Google Scholar] [CrossRef]
- Maciá-Agulló, J.A.; Moore, B.C.; Cazorla-Amorós, D.; Linares-Solano, A. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004, 42, 1367–1370. [Google Scholar] [CrossRef]
- Sun, L.; Chen, D.; Wan, S.; Yu, Z. Adsorption Studies of Dimetridazole and Metronidazole onto Biochar Derived from Sugarcane Bagasse: Kinetic, Equilibrium, and Mechanisms. J. Polym. Environ. 2018, 26, 765–777. [Google Scholar] [CrossRef]
- Shaaban, A.; Se, S.M.; Dimin, M.F.; Juoi, J.M.; Mohd Husin, M.H.; Mitan, N.M.M. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 2014, 107, 31–39. [Google Scholar] [CrossRef]
- Heschel, W.; Klose, E. On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel 1995, 74, 1786–1791. [Google Scholar] [CrossRef]
- Lan, X.; Jiang, X.; Song, Y.; Jing, X.; Xing, X. The effect of activation temperature on structure and properties of blue coke-based activated carbon by CO2 activation. Green Process. Synth. 2019, 8, 837–845. [Google Scholar] [CrossRef]
- Üner, O.; Bayrak, Y. The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater. 2018, 268, 225–234. [Google Scholar] [CrossRef]
- Budi, E.; Nasbey, H.; Yuniarti, B.D.P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A.S. Pore structure of the activated coconut shell charcoal carbon. AIP Conf. Proc. 2014, 1617, 130–133. [Google Scholar] [CrossRef]
- Samaras, P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption Related papers. J. Hazard. Mater. 2007, 151, 414–421. [Google Scholar] [CrossRef]
- Bergna, D.; Hu, T.; Prokkola, H.; Romar, H.; Lassi, U. Effect of Some Process Parameters on the Main Properties of Activated Carbon Produced from Peat in a Lab-Scale Process. Waste Biomass Valorization 2020, 11, 2837–2848. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Appl. Surf. Sci. 2006, 252, 5980–5983. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Gottipati, R. Preparation and Characterization of Microporous Activated Carbon from Biomass and Its Application in the Removal ofChromium(VI) from Aqueous Phase. Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2012. [Google Scholar]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Kawano, T.; Kubota, M.; Onyango, M.S.; Watanabe, F.; Matsuda, H. Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl. Therm. Eng. 2008, 28, 865–871. [Google Scholar] [CrossRef]
- Pal, A.; Kil, H.S.; Mitra, S.; Thu, K.; Saha, B.B.; Yoon, S.H.; Miyawaki, J.; Miyazaki, T.; Koyama, S. Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Appl. Therm. Eng. 2017, 122, 389–397. [Google Scholar] [CrossRef]
- Sumon Reza, M.; Sing Yun, C.; Afroze, S.; Radenahmad, N.; Abu Bakar, M.S.; Saidur, R.; Taweekun, J.; Azad, A.K.; Darussalam, B.; Link, J. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- Pal, A. Study on Novel Functional Activated Carbon and Composites for Adsorption Heat Pump Systems—Collections | Kyushu University Library; Kyushu University: Fukuoka, Japan, 2018. [Google Scholar]
- Bangladesh Rice, Paddy Production, 1961–2021. Available online: https://www.google.com/amp/knoema.com/atlas/Bangladesh/topics/Agriculture/Crops-Production-Quantity-tonnes/Rice-paddy-production (accessed on 21 March 2022).
- Bamboo Cultivation Gets Popular in Madaripur | The Daily Star. Available online: https://www.google.com/amp/s/www.thedailystar.net/country/bamboo-cultivation-gets-popular-madaripur (accessed on 21 March 2022).
- Bangladesh Sugar Cane Production, 1961–2021. Available online: https://knoema.com/atlas/Bangladesh/topics/Agriculture/Crops-Production-Quantity-tonnes/Sugar-cane-production (accessed on 21 March 2022).
- Bangladesh—Coconuts—Production—Production Statistics—Crops, Crops Processed—Knoema.com. Available online: https://knoema.com/FAOPRDSC2020/production-statistics-crops-crops-processed (accessed on 21 March 2022).
- Rahman, M.S. Demand, Supply and Reasons for Price Hike of Potato in Bangladesh. Bangladesh J. Agric. Econ. 2021, 42, 93–108. [Google Scholar]
- Wilson, R. Impacts of Climate Change on Mangrove Ecosystems in the Coastal and Marine Environments of Caribbean Small Island Developing States (SIDS). Caribb. Clim. Chang. Rep. Card Sci. Rev. 2017, 2017, 60–82. [Google Scholar]
- Hariprasad; Sivaraj, R. Preparation and Characterization of Activated Carbon from Rice Husk. Int. Res. J. Eng. Technol. 2016, 22, 551–558. [Google Scholar]
- Song, C.; Wu, S.; Cheng, M.; Tao, P.; Shao, M.; Gao, G. Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(ii) from aqueous solutions. Sustainability 2014, 6, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Granule Activated Charcoal Powder/Granules from Rice Husk. Available online: https://m.indiamart.com/proddetail/activated-charcoal-powder-granules-from-rice-husk-20764391273.html (accessed on 21 March 2022).
- Udeh, N. Production and Characterization of Activated Carbon from Nigerian Bamboo Using the Two Methods of Activation. Int. J. Eng. Invent. 2018, 7, 1–9. [Google Scholar]
- Bamboo Charcoal at Best Price in India. Available online: https://m.indiamart.com/impcat/bamboo-charcoal.html (accessed on 21 March 2022).
- Coconut Shell Activated Carbon at Rs 18000/ton | Coconut Shell Carbon, Coconut Based Activated Carbon- Sendoff Export, Madurai | ID: 13200548255. Available online: https://m.indiamart.com/proddetail/coconut-shell-activated-carbon-13200548255.html (accessed on 21 March 2022).
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Piraján, J.C.; Giraldo, L. Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J. Anal. Appl. Pyrolysis 2011, 90, 42–47. [Google Scholar] [CrossRef]
- Topare, N.S.; Shruti, C.G.; Khedkar, S.; Renge, V.; Bhagat, S. Production of activated carbon from sugarcane bagasse. Int. J. Adv. Eng. Technol. 2011, 2, 356–358. [Google Scholar]
- Cane Sugar Purification Activated Carbon. Available online: https://m.indiamart.com/proddetail/cane-sugar-purification-activated-carbon-13750395348.html (accessed on 21 March 2022).
- Paryanto; Wibowo, W.A.; Hantoko, D.; Saputro, M.E. Preparation of Activated Carbon from Mangrove Waste by KOH Chemical Activation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012087. [Google Scholar] [CrossRef] [Green Version]
- Mangrove Wood Charcoal. Available online: https://m.indiamart.com/proddetail/mangrove-wood-charcoal-20883336891.html (accessed on 21 March 2022).
- Van Tran, T.; Bui, Q.T.P.; Nguyen, T.D.; Thanh Ho, V.T.; Bach, L.G. Application of response surface methodology to optimize the fabrication of ZnCl2-activated carbon from sugarcane bagasse for the removal of Cu2+. Water Sci. Technol. 2017, 75, 2047–2055. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Guo, L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 2010, 31, 233–238. [Google Scholar] [CrossRef]
- Yang, J.; Han, S. Kinetics and equilibrium study for the adsorption of lysine on activated carbon derived from coconut shell. Desalination Water Treat. 2018, 120, 261–271. [Google Scholar] [CrossRef]
- Tan, M.A.; Lim, C. Yeo Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments. J. Appl. Sci. Process Eng. 2017, 4, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Bachrun, S.; Ayurizka, N.; Annisa, S.; Arif, H. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conf. Ser. Mater. Sci. Eng. 2016, 105, 012027. [Google Scholar] [CrossRef] [Green Version]
- Van Tran, T.; Bui, Q.T.P.; Nguyen, T.D.; Le, N.T.H.; Bach, L.G. A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorpt. Sci. Technol. 2017, 35, 72–85. [Google Scholar] [CrossRef]
- Yorgun, S.; Yildiz, D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J. Taiwan Inst. Chem. Eng. 2015, 53, 122–131. [Google Scholar] [CrossRef]
- Kra, D.O.; Allou, N.B.; Atheba, P.; Drogui, P.; Trokourey, A.; Kra, D.O.; Allou, N.B.; Atheba, P.; Drogui, P.; Trokourey, A. Preparation and Characterization of Activated Carbon Based on Wood (Acacia auriculeaformis, Côte d’Ivoire). J. Encapsulation Adsorpt. Sci. 2019, 9, 63–82. [Google Scholar] [CrossRef] [Green Version]
- Olakunle, M.; Alfa, A.; Mohammed, M.; Ahmadu, A. Development of Adsorbents from Rice Husk for Cesium Removal from Simulated Waste Water Using Central Composite Design. 2019. Available online: http://journal.fudutsinma.edu.ng/index.php/fjs/article/view/907 (accessed on 5 April 2022).
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Activated carbons produced by pyrolysis of waste potato peels: Cobaltions removal by adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 490, 74–83. [Google Scholar] [CrossRef]
- Koyanagi, K.; Furuta, A.; Takeuchi, C.; Shibata, H.; Kawamura, N.; Nonami, T. Adsorption of Cesium and Strontium Ions by Alkali-Treated Rice Hull Charcoal. Trans. Mater. Res. Soc. Jpn. 2019, 44, 165–169. [Google Scholar] [CrossRef]
- Shrestha, L.; Thapa, M.; Shrestha, R.; Maji, S.; Pradhananga, R.; Ariga, K. Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C J. Carbon Res. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Yakout, S.M.E.; Abdeltawab, A.A.; Elhindi, K.; Askalany, A. Uranium Dynamic Adsorption Breakthrough Curve onto Rice Straw Based Activated Carbon Using Bed Depth Service Time Model. BioResources 2018, 13, 9143–9157. [Google Scholar] [CrossRef]
- Gad, H.M.; Omar, H.A.; Aziz, M.; Hassan, M.R.; Khalil, M.H. Treatment of rice husk ash to improve adsorption capacity of cobalt from aqueous solution. Asian J. Chem. 2016, 28, 385–394. [Google Scholar] [CrossRef]
- Ma, X.; Yang, H.; Yu, L.; Chen, Y.; Li, Y. Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials 2014, 7, 4431–4441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, Z.; Zhang, H.; Liu, Q.; Yu, J.; Liu, J.; Chen, R.; Zhu, J.; Wang, J. Anti-bacterial and super-hydrophilic bamboo charcoal with amidoxime modified for efficient and selective uranium extraction from seawater. J. Colloid Interface Sci. 2021, 598, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Kakavandi, B.; Raofi, A.; Peyghambarzadeh, S.M.; Ramavandi, B.; Niri, M.H.; Ahmadi, M. Efficient adsorption of cobalt on chemical modified activated carbon: Characterization, optimization and modeling studies. Desalination Water Treat. 2018, 111, 310–321. [Google Scholar] [CrossRef]
- Babatunde, O.; Garba, S.; Chem, Z.A.-A.J. Surface modification of activated carbon for improved iodine and carbon tetrachloride adsorption. Am. J. Chem. 2016, 6, 74–79. [Google Scholar] [CrossRef]
- Mohammed, U.; Binta, M.; Mustapha, S.; Idris, M. Removal of Lead and Cobalt from Pharmaceutical Effluent: Efficiency of Activated Coconut Shell and Commercial Activated Carbon. Am. Chem. Sci. J. 2016, 12, 1–8. [Google Scholar] [CrossRef]
- Abdel Samad, A.A.; Abdel Aal, M.M.; Haggag, E.A.; Yosef, W.M. Synthesis and Characterization of Functionalized activated Carbon for Removal of Uranium and Iron from Phosphoric Acid. Basic Environ. Sci. 2020, 7, 140–153. [Google Scholar]
- Kausar, A.; MacKinnon, G.; Alharthi, A.; Hargreaves, J.; Bhatti, H.N.; Iqbal, M. A green approach for the removal of Sr(II) from aqueous media: Kinetics, isotherms and thermodynamic studies. J. Mol. Liq. 2018, 257, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.X.; Huang, B.; Li, T.; Wu, G.F. Preparation of phosphoric acid activated carbon from sugarcane bagasse by mechanochemical processing. BioResources 2012, 7, 5109–5116. [Google Scholar] [CrossRef]
- Su, S.; Liu, Q.; Liu, J.; Zhang, H.; Li, R.; Jing, X.; Wang, J. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions. Sci. Rep. 2018, 8, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, K.A.; Anirudhan, T.S. Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chem. Eng. J. 2008, 137, 257–264. [Google Scholar] [CrossRef]
- Budianto, A.; Kusdarini, E.; Effendi, S.S.W.; Aziz, M. The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conf. Ser. Mater. Sci. Eng. 2019, 462, 012006. [Google Scholar] [CrossRef]
- Yang, H.B.; Sun, M.; Tan, N.; She, Z.G.; Wu, F.J.; Lin, Y.C.; Liu, H.J. Biosorption of uranium(VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J. Radioanal. Nucl. Chem. 2012, 292, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, S.; Dauda, B.E.N.; Ndamitso, M.M.; Amigun, A.T.; Mohammed, U.M.; Mathew, J. Sequestering of Ni (II) and Co (II) from Aqueous Solution Using Spines of Bombax buonopozense as Low-Cost Adsorbent. Am. J. Chem. Eng. 2017, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Sutirman, Z.A.; Sanagi, M.M.; Wan Aini, W.I. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. Int. J. Biol. Macromol. 2021, 174, 216–228. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Micro and Nano Technologies, Nanomaterials for the Detection and Removal of Wastewater Pollutant; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Guo, M.; Wang, J.; Zhang, C.; Zhang, X.; Xia, C.; Lin, H.; Lin, C.Y.; Lam, S.S. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water. Environ. Res. 2022, 214, 113863. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Karmaker, S.C.; Pal, A.; Eljamal, O.; Saha, B.B. Statistical techniques for the optimization of cesium removal from aqueous solutions onto iron-based nanoparticle-zeolite composites. Environ. Sci. Pollut. Res. 2021, 28, 12918–12931. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, S.; Kuba, T.; Kamida, S.; Uchikawa, Y. Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng. 2017, 5, 1456–1464. [Google Scholar] [CrossRef]
- Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag. J. Environ. Manag. 2018, 222, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lee, Y.G.; Kwak, J.; Kim, S.; Lee, S.H.; Park, Y.; Lee, S.D.; Chon, K. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J. Environ. Chem. Eng. 2021, 9, 105119. [Google Scholar] [CrossRef]
- Aslani, C.K.; Amik, O. Active Carbon/PAN composite adsorbent for uranium removal: Modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl. Radiat. Isot. 2021, 168, 109474. [Google Scholar] [CrossRef]
- López-Luna, J.; Ramírez-Montes, L.E.; Martinez-Vargas, S.; Martínez, A.I.; Mijangos-Ricardez, O.F.; González-Chávez, M.d.C.A.; Carrillo-González, R.; Solís-Domínguez, F.A.; Cuevas-Díaz, M.d.C.; Vázquez-Hipólito, V. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl. Sci. 2019, 1, 950. [Google Scholar] [CrossRef]
- Kowanga, K.D.; Gatebe, E.; Mauti, G.O.; Mauti, E.M. Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder. J. Phytopharm. 2016, 5, 71–78. [Google Scholar] [CrossRef]
- Mellah, A.; Chegrouche, S.; Barkat, M. The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations. J. Colloid Interface Sci. 2006, 296, 434–441. [Google Scholar] [CrossRef]
- Hamed, M.M.; Ali, M.M.S.; Holiel, M. Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies. J. Environ. Radioact. 2016, 164, 113–124. [Google Scholar] [CrossRef]
- Mariana, M.; Abdul, A.K.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Peng, H.; Gao, P.; Chu, G.; Pan, B.; Peng, J.; Xing, B. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Shi, J.X.; Langrish, T.A.G. Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid. Chem. Eng. J. 2009, 152, 434–439. [Google Scholar] [CrossRef]
- Baik, S.; Zhang, H.; Kim, Y.K.; Harbottle, D.; Lee, J.W. Enhanced adsorption capacity and selectivity towards strontium ions in aqueous systems by sulfonation of CO2 derived porous carbon. RSC Adv. 2017, 7, 54546–54553. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, H.; Chen, R.; Liu, Q.; Liu, J.; Wang, C.; Sun, Z.; Wang, J. Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. J. Colloid Interface Sci. 2019, 534, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Oh, D.; Kang, S.; Kim, Y.; Kim, S.; Chung, Y.; Seo, Y.; Hwang, Y. Reformation of the surface of powdered activated carbon (PAC) using covalent organic polymers (COPs) and synthesis of a Prussian blue impregnated adsorbent for the decontamination of radioactive cesium. J. Alloy Compd. 2019, 785, 46–52. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Cheng, C.; Tian, G.; Zhang, C. Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions. Chem. Eng. J. 2011, 175, 24–32. [Google Scholar] [CrossRef]
Radionuclide | Isotope Mass | Physical Half-Life | Biological Half-Life | Decay Mode | Energy of Decay Particles (MeV) | Health Hazard | References |
---|---|---|---|---|---|---|---|
Cesium-137 | 136.91 u | 30.17 years | 70 days | β− | 0.514 |
| [55,56,57] |
Radioactive Iodine (I-131) | 130.9 u | 8.02 days | 138 days | β− and γ | 0.606 for β− 0.364 for γ |
| [34,35,36,58] |
Zinc-65 | 64.9 u | 243.8 days | 933 days | β− and γ | 0.33 for β− 1.116 for γ |
| [59,60,61] |
Radon | 222 u | 3.8 days | A | 0.024 |
| [62,63] | |
Strontium-90 | 89.9 u | 28.8 years | 18000 days | β− | 0.546 |
| [56,57,64] |
Uranium | 238.02 u | 4.468 × 109 years | 15 days | A | 4.267 |
| [56,61,65] |
Cobalt-60 | 59.9 u | 5.3 years | 10 | Γ | 1.17 and1.33 |
| [56,61,66] |
Removal Techniques | Advantages | Limitations | References |
---|---|---|---|
Adsorption |
|
| [10,86] |
Evaporation |
|
| [12,87] |
Ion exchange |
|
| [12,13] |
Electrodialysis |
|
| [10,88] |
Membrane filtration |
|
| [10,88] |
Chemical precipitation |
|
| [10,11] |
Adsorbent | Advantages | Disadvantages | References |
---|---|---|---|
Activated carbon |
|
| [90,91] |
Zeolite |
|
| [19] |
Graphene |
|
| [92,93] |
Nanotube |
|
| [94] |
MOFs |
|
| [20,21] |
Adsorbent Type | Adsorbent/ Adsorbate | Temperature (K) | Pressure | Concentration (mg L−1) | PH Level | BET Surface Area (m2 g−1) | Pore Size (nm) | Pore Volume (cm3 g−1) | Removal Efficiency (%) | Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Activated Carbon (AC) | BAC/Cs | 288–308 | 20–800 | 2–12 | 347.72 | 0.1817 | 98% | 55.25 | [96] | ||
MAC/Cs | 298–338 | 10–350 | 5.6 | 135.28 | [100] | ||||||
Hexacyanoferrate-AC/Cs | 298 | 1000 | 7 | 246 | 2 | 0.12 | 101.5 | [101] | |||
AC/Sr | 313 | 50 | 6 | 188 | 8 | 0.24 | 91.4% | 50 | [102] | ||
MMPC/Sr | 298 | 1 | 10 | 667 | 2 | 0.62 | 93.3% | 42.5 | [103] | ||
PSBAC/Sr | 343 | 100 | 6 | 1517 | 0.7 | 98% | 8.12 | [104] | |||
SACFP/iodine | 383 | 8–10 | 950–1000 | 99% | 850.5 | [105] | |||||
AC/iodine | 328 | 169.069 | 10 | 499 | 2.2 | 98.5% | 909.091 | [106] | |||
SVAC/iodine | 298 | 150 | 6.94 | 1178 (micro) 318 (meso) | 0.4 | 99% | 1178 | [107] | |||
AC/uranium | 303 | 83.72 | 5 | 364.17 | 0.15 | 92 ± 4% | 50.539 | [108] | |||
MRSAC/uranium | 298 | 60 | 4 | 97.6% | 11.36 | [97] | |||||
PAF/uranium | 293 | 1 | 5 | 303 | 62 | 98.5% | 115.31 | [109] | |||
MCSG60A/cobalt | 298 | 20 | 6 | 911 | 6 | 1.12 | 85–90% | 1.5 | [110] | ||
AC/cobalt | 303 | 13.30–45.55 | 6 | 441 | 90% | 13.88 | [111] | ||||
AC/cobalt | 298–323 | 80 | 9 | 0.3–1.6 | 93% | 111.11 | [112] | ||||
Zeolite | MBS zeolite/cesium | 298 | 100 | 2–12 | 103.631 | 0.28 | 97% | 51.02 | [113] | ||
nFe/Cu–Z/cesium | 298 | 100 | 6 | 900 | 22 | 73.72% | 77.51 | [98] | |||
nZVI–Z/cesium | 313 | 200 | 6 | 900 | 22 | 63.11% | 71.12 | [98] | |||
nFe/Cu–Z/strontium | 343 | 100 | 12 | 900 | 89.73% | 88.74 | [114] | ||||
nZVI–Z/strontium | 343 | 100 | 12 | 900 | 86.82% | 84.12 | [114] | ||||
Zeolite@Alg-Ca/strontium | 328.15 | 140 | 4 | 96.48% | 88.31 | [115] | |||||
Organo-modified zeolite/iodine | 306 | 120 | 7.1–6.8 | 90% | 4.02 | [116] | |||||
ZIFs/iodine | 323 | 1000 | 897 | 1.87 | 85% | 226 | [117] | ||||
Synthetic zeolite/iodine | 298 | 375 | 2–12 | 51 ± 5.6 | 10 ± 0.1 | 0.13 ± 0.05 | 94.85% | 20.44 | [118] | ||
Clinoptilolite zeolite/uranium | 298 | <1 | 5 | 6 | 18 | 16.6 | 0.027 | 95.6% | 0.7 | [119] | |
MOCZ/uranium | 293 | −3.5 | 25–400 | 4 | 91% | 15.1 | [120] | ||||
HEU-type zeolite/uranium | 298 | 100 | 4.5–7 | 200 | 88% | 11.68 | [121] | ||||
Zeolite/cobalt | 303–333 | 200 | 2–7.5 | 78% | 120.9 | [122] | |||||
Sodium-modified Zeolite/cobalt | 333 | 265 | 7.2 | 98% | 20.73 | [123] | |||||
Zeolite/cobalt | 298 | 50 | 50 | 98.7% | 2.73 | [124] | |||||
Graphene | Graphene oxide/cesium | 283 | 9 | 93.7 | 2.43 | 0.31 | 95.46 | [125] | |||
PB/Fe3O4/GO/cesium | 298 | 1 | 100 | 7 | 15 | 80% | 43.52 | [126] | |||
PB-GO-Alg bead/cesium | 273 | 1 | 10,000 | 5–7 | 130.2 | 146.1 | 98% | 290.6 | [127] | ||
GO/strontium | 303 | 1000 | 6 | 91% | 137.80 | [128] | |||||
GO/strontium | 298 | 150 | 5 | 232 | 79.5 | 0.40 | 90% | 131.4 | [129] | ||
Polymer GO/strontium | 298 | 1 | 5 | 6 | 450 | 99% | 145.77 | [130] | |||
GO/iodine | 308 | 1.5 | 7.2 ± 0.2 | 200 | 92.6% | 30.52 | [131] | ||||
Porous graphene/iodine | 298 | 1 | 300 | 5–7 | 1755 | 2.5 | 1.31 | 4110 | [132] | ||
Bi-GO/iodine | 298 | 0.99 to 1.01 | 10 | 6.2 | 12.7 | 95% | 200–230 | [133] | |||
AMGO/uranium | 328 | 1 | 42.84 | 5.9 | 59.09 | 200 | 0.37 | 90% | 141.2 | [134] | |
rGO/uranium | 100 | 4 | 162.92 | 94.76% | 134.23 | [135] | |||||
rGO/LDH/uranium | 298 | 130 | 4 | 256.80 | 4.53 | 0.66 | 99% | 250.6 | [135] | ||
GO-NH2/cobalt | 298 | 300 | 6 | 320 | 220 | 90% | 116.35 | [136] | |||
β–CD/GO/cobalt | 303 | 1 | 100 | 11 | 98.5% | 72.4 | [137] | ||||
(GO)/chitosan/cobalt | 293–323 | 5–9 | 27.15 | 1.953 | 0.127 | 15.24 | [138] | ||||
Nanotube | Oxidized MWCNTs/cesium | 298 | 0.0001–0.99 | 5–75 | 10 | 83.5 | 36 | 0.24 | 45% | 12.75 | [139] |
Amino-MWCNTs/cesium | 308 | 0.99 | 14.79 | 7 | 112.5 | 95% | 136.3 | [140] | |||
PBA-CS-CNTs/cesium | 293 ± 2 | 200 | 6 | 90% | 219.8 | [141] | |||||
Oxidized MWCNTs/strontium | 298 | 0.0001–0.99 | 5–20 | 6.5 | 83.5 | 40–60 | 85% | 6.62 | [99] | ||
CNTs/strontium | 297 ± 2 | 3 | 3–9 | 500 | 8 | 95% | 4.41 | [142] | |||
MWCNTs/strontium | 298 ± 2 | 6 | 6.5 | 88.53 | 97% | 9.18 | [143] | ||||
SWCNTs/iodine | 298 | <1 | 0.05–50 | 560 | 95% | 35 | [144] | ||||
SWCNTs/iodine | 298 | 333 | 570 | 22.60% | 1.356 | [145] | |||||
Ag-CNTs/iodine | 298 | 0.01–0.3 | 8 | 72.14 | 458 ± 73 | [146] | |||||
PAO@CNT/uranium | 298 | 0.993 | 56 | 4 | 58.169 | 40.88 | 0.595 | 247 | [147] | ||
CS-CCN2/uranium | 298 | 0.05–0.2 | 120 | 5 | 106.4 | 17.3 | 92% | 307.5 | [148] | ||
PVA/MWCNTs/uranium | 298 | 100–1000 | 3 | 99 | 20–30 | 98.5% | 232.55 | [149] | |||
Magnetic MWCNTs/cobalt | 333.15 | 4.2 | 6.3–6.5 | 96% | 2.88 | [150] | |||||
MWCNTs/cobalt | 293–313 | 10-5–0.998 | 56.57 | 10 | 370 | 3.8 | 90% | 78.94 | [151] | ||
NaAlg-HAp-CNT/cobalt | 293 | 400 | 7.4 | 163.4 | 15–20 | 347.8 | [152] | ||||
Metal–Organic Framework (MOF) | Nd-BTC MOF/cesium | 308–338 | 0.99 | 1000 | 8 | 582 | 1.04 | 0.28 | 92% | 86 | [153] |
MOF-KNiFC/cesium | 298–328 | 100 | 5 | 47.74 | 20.04 | 0.13 | 153 | [154] | |||
MOF-Fe3O4-KNiFC/cesium | 298–328 | 100 | 4 | 111.7 | 8.897 | 0.25 | 109 | [154] | |||
Nd-BTC MOF/strontium | 308–338 | 0.99 | 1000 | 8 | 582 | 1.04 | 0.28 | 78% | 58 | [153] | |
ZnOx-MOF@MnO2/strontium | 298 | 10–400 | 11 | 122.18 | 3.726 | 0.091 | 88.28% | 147.094 | [155] | ||
Fe3O4@UiO-66-NH2-MOF/strontium | 298 | 0.05–5 | 878 | 8–10 | 0.69 | 0.4 | [156] | ||||
MIL-101(Cr)-SO3Ag/iodine | 303 | 0.99 | 127–2305 | 7.5 | 861 | 0.4 | 244.2 | [157] | |||
MIL-101(Cr)-SO3H/iodine | 303 | 0.99 | 127–2305 | 7.5 | 1588 | 0.66 | 94.1 | [157] | |||
Lac-Zn-MOF/iodine | 298 | 0.1–1 | 50.80 | 6–7 | 227 | 15.71 | 92.89% | 755 | [158] | ||
Amidoxime MOF/uranium | 298 | 9.8 | 9 | 1035 | 8 | 99% | 2.68 | [159] | |||
UiO-66-NH2/uranium | 313.15 | 0.9–0.99 | 500–600 | 8 | 400 | 100–200 | 0.21 | 97.3–98.1% | 278 | [160] | |
nZVI-UiO-66/uranium | 313 | 80 | 6 | 1025.305 | 11.1 | 0.444 | 80% | 404.9 | [161] | ||
UiO-66-Schiff/cobalt | 288–318 | 1 | 10–72.5 | 8.4 | 503 | 3.41 | 0.15 | 256 | [162] | ||
Cr-MOF-AC/cobalt | 298–318 | 70 | 5 | 2440 | 200 | 1.27 | 138 | [163] | |||
Co(Ⅱ)-ⅡP-MOF/cobalt | 288–308 | 10 | 8.4 | 482.46 | 3.41 | 0.189 | 90% | 175 | [164] |
Biomass Precursor | Favorable Weather | Annual Production in Bangladesh | Regions with Plentiful Growth | Reference |
---|---|---|---|---|
Rice | Hot, humid atmosphere | 54.9 million tons | Almost every district of Bangladesh, especially in Rajshahi, Dinajpur, Dhaka, Chandpur, Mymensingh, Sylhet, etc. | [200] |
Bamboo | Warm temperate, tropical regions | 1500 pieces per hectare | Chittagong hill tracts | [201] |
Sugarcane | Warm, humid atmosphere | 3.68 million metric tons | Chittagong, Comilla, Bogra, Dinajpur Sylhet, Dhaka, Faridpur, Jamalpur, Jessore, Kushtia, Pabna, Rajshahi, Kishoreganj, Tangail and Rangpur. | [202] |
Coconut | Relative humidity between 80–90% and annual rainfall of 1500 mm | 431,596 tons | Coastal areas such as Chittagong, Teknaf, Khulna, Bagerhat, etc. | [203] |
Potato | Rainfall of 400 to 600 mm, temperatures between 18 and 20 °C | 9.61 million metric tons | Rangpur, Jessore, Meherpur, Thakurgaon, Dinajpur, Sherpur and Chuadanga. | [204] |
Mangrove wood | Sufficient rainfall and a temperature range of 15–25 °C (not less than 10 °C) | Sundarbans | [205] |
Precursors | Initial Carbon Content (%) | Widely Used Activating Agent | Activation Process Steps | References |
---|---|---|---|---|
Rice husk | 30–50% | NaOH, KOH, HCL, Ozone |
| [206,208] |
Bamboo | 39% | KOH, H2SO4, KMnO4, ZnCl2 | Chemical activation:
| [209,210] |
Coconut shell | 30–40% | KOH, Potassium acetate, H3PO4 | Chemical activation method:
| [209,211] |
Potato peels/ Rotten potato | 44% | KOH, ZnCl2, H3PO4, CO2 |
The activation is performed in two consecutive processes:
First, activation with H3PO4:
Second, activation with KOH:
| [212,213] |
Sugar-cane bagasse | 35–45% | ZnCl2, H3PO4, Steam |
| [214,215] |
Mangrove wood | 47% | HCL, KOH |
| [216,217] |
Raw | Activating Agent | BET Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Reference |
---|---|---|---|---|---|
Rice husk | ZnCl2/CO2 | 480 | 1.3652 | 4.4 | [27] |
NaOH | 2681 | 1.4016 | 4 | [175] | |
KOH | 2696 | 1.496 | 2.634 | [176] | |
FeCl3 solution | 99.32 | 0.332 | [219] | ||
Bamboo | H2SO4 | 825.456 | 0.236 | 0.6077 | [177] |
H3PO4 | 1492.50 | 0.731 | 2.49 | [178] | |
Microwave induced H3PO4 | 1432 | 0.696 | - | [220] | |
Coconut shell | KOH | 1118.2 | 0.4992 | 0.49 | [221] |
HCL | 525 | 0.291 | 1.42 | [222] | |
NaOH | 346 | 0.199 | 1.256 | [222] | |
Potato peels | KOH | 833 | 0.44 | 2.23 | [212] |
ZnCl2 | 1357 | 1.065 | 2 | [22] | |
ZnCl2 | 1078 | 0.97 | <1 | [213] | |
Sugarcane bagasse | H3PO4 | 661.46 | 0.2455 | 2.48 | [223] |
ZnCl2 | 1502 | 0.886 | 0.85 | [224] | |
ZnCl2 | 1495 | 0.88 | 0.85 | [217] | |
CO2 | 906.1 | 0.174 | 1.505 | [218] | |
Mangrove wood | KOH | 2991 | 2.68 | 1.81 | [34] |
H3PO4 | 2806 | 1.746 | 1–5 | [225] | |
H3PO4 | 561.6 | 0.26 | 1.126 | [226] |
Precursor | Radionuclide | Activating Agent | pH Level | Concentration (mg L−1) | Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|---|---|
Rice husk | Cesium | Titanium silicates | 6 | 70 | 13.58 | [227] |
Strontium | Potassium hexacyano ferrate | 6.89 | 100 | 42.5 | [229] | |
Iodine | NaOH, ZnCl2, KOH | 25–1000 | 1726 | [230] | ||
Uranium | KOH | 5.5 | 100 | 84.5 | [231] | |
Cobalt | Silica gel | 8 | 100 | 75.7 | [232] | |
Bamboo | Cesium | NaCl, KCl, NaOH, HCl | 12 | 100 | 55.25 | [96] |
Strontium | Al2O3, KOH | 9.5 | 10 | 32.62 | [28] | |
Iodine | Steam | - | -- | 942 | [233] | |
Uranium | Amidoxime | 7 | 100 | 396.51 | [234] | |
Cobalt | Sodium dodecyl sulfate | 6 | 20 | 51 | [235] | |
Coconut shells | Cesium | Physical activation | 8.15 | 30 | 0.76 | [31] |
Strontium | Physical activation | Alkaline | 10.30 | 2.02 | [31] | |
Iodine | HNO3, KOH | - | - | 1385.5 | [236] | |
Uranium | Physical activation | >5 | 100 | 55.32 | [31] | |
Cobalt | Na2SO4 | 6.87 | 5 | 0.09 | [237] | |
Potato peels | Cesium | - | - | - | - | - |
Strontium | - | - | - | - | - | |
Iodine | H3PO4 | 6.8 | - | 420 | [30] | |
Uranium | Ferrous sulphate | 3 | 100 | 54.5 | [238] | |
Cobalt | H3PO4 | 6 | 200 | 405 | [228] | |
Sugarcane bagasse | Cesium | Prussian Blue | 10 | 300 | 56.7 | [29] |
Strontium | NaOH | 9 | 10–100 | 17.6 | [239] | |
Iodine | H3PO4 | - | - | 889.37 | [240] | |
Uranium | EDTA | 5 | 100 | 1394.1 | [241] | |
Cobalt | Sulphurized AC | 6 | 50 and 100 | 153.85 | [242] | |
Mangrove wood | Cesium | Carboxyl, carbonyl and hydroxyl functional groups | 7 | 50 | 133.54 | [35] |
Strontium | - | - | - | - | Not available | |
Iodine | H3PO4 | 7 | - | 1019.87 | [243] | |
Uranium | HCl | 4 | 50 | 16 | [244] | |
Cobalt | - | 6.9 | 10–50 | 3.18 | [245] |
Isotherm Model | Adsorbate | Adsorbent | Parameters | Reference | ||
---|---|---|---|---|---|---|
Langmuir | qm (mg/g) | KL (L/mg) | R2 | |||
Cesium | Oxidized BC | 55.25 | 0.021 | 0.991 | [96] | |
Cesium | Nitric acid–modified BC | 45.87 | 0.278 | 0.991 | [254] | |
Cesium | Modified molten slag | 52.36 | 0.1496 | 0.989 | [255] | |
Strontium | Pristine biochar | 41.2 | 0.0023 | 0.999 | [256] | |
Strontium | Magnetic biochar | 40.2 | 0.0017 | 0.999 | [256] | |
Uranium | AC/PAN composite | 27.47 | 0.031 | 0.949 | [257] | |
Cobalt | Potato peels AC (400 °C) | 373 | 0.035 | 0.998 | [228] | |
Cobalt | Potato peels AC (600 °C) | 405 | 0.050 | 0.995 | [228] | |
Freundlich | Kf | (1/n) | R2 | |||
Cesium | Oxidized BC | 1.474 L/mg | 0.535 | 0.966 | [96] | |
Cesium | Nitric acid–modified BC | 10.56 mg/g | 0.2628 | 0.797 | [254] | |
Cesium | Modified molten slag | 12.16 L/mg | 0.269 | 0.988 | [255] | |
Strontium | Pristine biochar | 25.8 mg1−(1/n) L1/n g−1 | 0.244 | 0.949 | [256] | |
Strontium | Magnetic biochar | 23.5 mg1− (1/n) L1/n g−1 | 0.268 | 0.950 | [256] | |
Uranium | AC/PAN composite | 1.398 mg/g | 0.598 | 0.883 | [257] | |
Cobalt | Potato peels AC (400 °C) | 57.68 mg1−(1/n) L1/n g−1 | 0.302 | 0.937 | [228] | |
Cobalt | Potato peels AC (600 °C) | 72.40 mg1−(1/n) L1/n g−1 | 0.285 | 0.947 | [228] | |
Temkin | b (kJ/mol) | A (L/g) | R2 | |||
Cesium | Modified molten slag | 0.26 | 0.81 | 0.995 | [255] | |
Uranium | AC/PAN composite | 0.588 | - | 0.925 | [257] |
Adsorbate | Adsorbent | Concentration (mg L−1) | k1 (min−1) | k2 (g/mg.min) | Calculated qe (mg g−1) | Experimental qe (mg g−1) | R2 | Model Name | Reference |
---|---|---|---|---|---|---|---|---|---|
Cesium | Bamboo-based AC | 20–800 | - | 0.314 | 9.090 | 9.021 | 0.999 | Pseudo-second-order | [254] |
Oxidized bamboo-based AC | 20–1000 | - | 0.016 | 3.44 | 3.16 | 0.998 | Pseudo-second-order | [96] | |
Modified molten sludge | 20–800 | - | 1.37 | 10.30 | 10.30 | 1.0 | Pseudo-second-order | [255] | |
Strontium | Pecan shell AC | 25–100 | - | 0.008 | 6.17 | - | 0.98 | Pseudo-second-order | [104] |
Magnetic SCG biochars | 5–50 | - | 0.307 | 34.7 | 34.5 | 1.0 | Pseudo-second-order | [256] | |
Pristine SCG biochars | 5–50 | - | 0.290 | 35.1 | 34.9 | 1.0 | Pseudo-second-order | [256] | |
Uranium | Granular AC | 100 | - | 0.004 | 25.51 | 24.44 | 0.99 | Pseudo-second-order | [260] |
Granular AC | 300 | 0.009 | - | 13.40 | 12.94 | 0.98 | Pseudo-first-order | [260] | |
AC/PAN | 10–400 | - | 0.029 | - | 9.36 | 1.0 | Pseudo-second-order | [257] | |
Cobalt | Doum stone AC | 100–250 | 0.027 | - | 9.90 | 14.81 | 0.997 | Pseudo-first-order | [261] |
Doum stone AC | 100–250 | - | 0.073 | 15.93 | 14.81 | 0.999 | Pseudo-second-order | [261] | |
Potato peels AC | 10–1000 | 0.0344 | - | 184.79 | - | 0.997 | Pseudo-first-order | [228] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, A.; Pal, A.; Saha, B.B. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. Materials 2022, 15, 8818. https://doi.org/10.3390/ma15248818
Chakraborty A, Pal A, Saha BB. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. Materials. 2022; 15(24):8818. https://doi.org/10.3390/ma15248818
Chicago/Turabian StyleChakraborty, Anik, Animesh Pal, and Bidyut Baran Saha. 2022. "A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent" Materials 15, no. 24: 8818. https://doi.org/10.3390/ma15248818
APA StyleChakraborty, A., Pal, A., & Saha, B. B. (2022). A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. Materials, 15(24), 8818. https://doi.org/10.3390/ma15248818