Electrospun Conducting Polymers: Approaches and Applications
Abstract
:1. Introduction
2. Inherently Conducting Polymers
3. Electrospinning
3.1. Electrospinning Fundamentals
3.2. Electrospinning Parameters
3.2.1. Polymer Parameters
3.2.2. Process Parameters
4. Electrospinning Conducting Polymers
4.1. Introduction
4.2. Neat Electrospinning
4.3. Coaxial Electrospinning
Core | Shell | Core Solvent | Shell Solvent | Electrospinning Parameters | Fiber Diameter | Other Properties | Conductivity | Application | Ref | Notes | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied Voltage | Core Flow Rate | Shell Flow Rate | Tip-to-Collector Distance | ||||||||||
P3HT | CHCl3 | CHCl3 | CHCl3 | 18 kV | 0.7 L/min | 0.5 L/min | 7 cm | ~500 nm | Field effect mobility: 0.017 cm2/V-s | - | FET device fabrication | [198] | Field effect mobility of P3HT/PCL blend fibers: 0.00047 to 0.0012 cm2/V-s |
PANI | PMMA | CHCl3/DMF | DMF | 34 kV | 0.01 mL/min | 0.05 mL/min | 30 cm | 620 ± 160 nm | - | 50 ± 30 to 130 ± 40 S/cm (impedance) | [182] | Conductivity of PANI/PEO electrospun blend: 0.02 ± 0.01 to 8.1 ± 3.0 S/cm, PANI/PMMA electrospun blend: 2.0 ± 1.0 × 10−5 to 2.3 ± 1.6 × 10−2 S/cm, PMMA removed after electrospinning | |
MEH-PPV/PCBM | Polyvinylpyrrolidone (PVP) | Chlorobenzene | 8.5:1.5 EtOH:H2O | - | 4 µL/min | 25 µL/min | 11 cm | ~800 nm | - | - | Solar cells | [199] | Mix of blend and coaxial electrospinning, PVP removed after electrospinning |
P3AT | PMMA | CHCl3 | Chloro-benzene | 8.1–10 kV | 0.1 mL/h | 1.0 mL/h | 13 cm | 144–414 nm | Field effect mobility: 1.54 × 10−4 to 1.62 × 10−1 cm2/V-s | - | FETs | [200] | PMMA removed after electrospinning |
PU | PANI/PVA | CHCl3 | H2O/SDS/Acetic acid | - | 1× | 1–10× core | 13 cm | 60 nm (core), 98–100 nm (shell) | Elongation at break: 248.3 ± 19.3 to 395.3 ± 51.1% | 0.019 ± 0.002 to 1.092 ± 0.272 × 10−3 S/cm (Impedance) | Wearable pH sensor | [201] | |
AgNO3 | poly [2,7-(9,9-dihexylfluorene)-alt-4,7-(2,1,3-benzothiadiazole)] (PFBT)/PMAA | Ethyl glycol | THF (PFBT), 1:1 H2O:DMF (PMAA) | 14–15 kV | 0.1 mL/h | 1.0 mL/h | 13 cm | 550 nm (PFBT NPs: 13.33 ± 4.18 nm) | - | - | Organic photovoltaic cells | [202] |
4.4. Co-electrospinning with Carrier Polymers
ICP | Carrier Polymer | Solvent | Electrospinning Parameters | [ICP] | Fiber Diameter | Other Properties | Conductivity | Application | Ref | Notes | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied Voltage | Flow Rate | Tip-to-Collector Distance | ||||||||||
PPy | PCL/gelatin (1:1) | Hexafluoroisopropanol (HFIP) | 12 kV | 1 mL/h | 10 cm | 15% | 216 ± 36 nm | Contact angle: 46.9 ± 2.0°, Young’s modulus: 16.8 ± 1.9 MPa, elongation at break: 13.6 ± 3.2% | 0.013 mS/cm (4-point probe) | Cardiac tissue regeneration | [50] | - |
30% | 191 ± 45 nm | Contact angle: 63.5 ± 2.8°, Young’s modulus: 50.3 ± 3.3 MPa, elongation at break: 3.7 ± 1.4% | 0.37 mS/cm (4-point probe) | - | ||||||||
PEDOT:PSS | PVP | EtOH | 1.6 kV | - | 4.0 cm | 37% | 800 nm | - | 105 Ω-m (two-metal-microprobe impedance) | Gas sensor | [81] | Centrifugal electrospinning |
20 kV | - | 10 cm | 600–800 nm | - | - | Electrospinning | ||||||
PEDOT:PSS | PEO | DMF | 8.5 kV | 0.2 mL/h | 10 cm | 1.30% | 105–157 nm | - | 13–39 kΩ (sheet resistance) | - | [95] | - |
PEDOT | PCL | CHCl3: acetone (2:1) | 15 kV | 10 mL/h | 15 cm | 0.60% | 3900 ± 700 nm | Contact angle: ~115° | Drug delivery system | [142] | With curcumin | |
0.60% | 5400 ± 1200 nm | Contact angle: ~125° | Without curcumin | |||||||||
Polyindole (Pind) | PEO | CHCl3 | 20 kV | 1 mL/h | 15 cm | 80% | - | Specific capacitance: 322–555 F/g | - | Energy storage | [144] | Blend electrospinning–electrospraying with added carbon nanotubes |
PPy | PEO | H2O | 30 kV | - | 20 cm | 37.5–71.5% | 200–300 nm, 120–220 nm with non-ionic surfactant | - | 4.9 × 10−8 to 1.2 × 10−5 S/cm (two-point method) | - | [177] | - |
none | DMF | 30 kV | - | 20 cm | 100% | 70 nm | - | 2.7 × 10−2 S/cm (two-point method) | - | Doped with di(2-ethylhexyl) sulfosuccinate sodium salt (DEHS) | ||
PEO | H2O | 30 kV | - | 20 cm | 37.5–50% | 100–150 nm | - | 1.1 × 10−4 to 3.5 × 10−4 S/cm (two-point method) | - | PPy-SO3H doped with DEHS | ||
PANI | PVA | H2O | 10–20 kV | 0.2–0.8 mL/h | 10 cm | 10% | 234–560 nm | - | - | - | [174] | Studies done on effect of electrospinning parameters on nanofiber diameter |
MEH-PPV | PCL | CHCl3/DMF | 10–22 kV | 0.015–0.02 mL/min | 15 cm | 1% | 300–1100 nm | - | - | - | [192] | - |
P3HT | PCL | CHCl3 | 18 kV | - | 7 cm | 10–90% | ~30–250 nm | - | - | FET device fabrication | [198] | PCL dissolved with CHCl3 in electrospun mat |
PANI | PEO | CHCl3/DMF | 32–40 kV | 0.015–0.05 mL/min | 30 cm | 11–67% PANI | 1200 ± 300 to 2700 ± 900 nm | - | 0.02 ± 0.01 to 8.1 ± 3 S/cm (impedance) | - | [182] | - |
PMMA | DMF | 25–31 kV | 0.04–0.05 mL/min | 30 cm | 3.8–25% PANI | 1500 ± 200 to 1900 ± 400 nm | - | 2.0 ± 1.0 × 10−5 to 2.3 ± 1.6 × 10−2 S/cm (impedance) | - | Coaxially electrospun PANI/PMMA has conductivity of 50 ± 30 S/Cm | ||
PANI | PEO | CHCl3 | 25 kV | - | 25 cm | 11–50% | 950–1900 nm (average: 1600 nm) | - | ~0.00001–0.1 S/cm (4 point probe) | - | [189] | Conductivity of film of same composition: ~0.001–1 S/cm |
PANI-HCSA | PS | CHCl3 | - | - | - | 20% PANI | 72–100 nm (average: 85.8 nm) | - | Enough to be observed bare on an SEM | - | [175] | Pure electrospun PANI in H2SO4 properties: Fiber diameter: 96–275 nm, conductivity: ~0.1 S/cm |
PEDOT:PSS | PEO | - | 3–5 kV | 28–625 mg/h | - | 27–65% | 297–441 nm | - | 0.001–35.5 S/cm (2-electrode conductivity cell) | - | [203] | - |
PDBTT | PCL | 75:25 CHCl3:MeOH | 15 kV | 1 mL/h | 12 cm | 6.25% PDBTT | 350 ± 69 nm | Contact angle: 72 ± 2°, Young’s modulus: 20 ± 1 MPa, elongation at break: ~200% | - | Skin tissue engineering | [204] | - |
PPy | PEO, PCL | DMSO, CHCl3, 2-chloroethanol | 20 kV | 0.5 mL/h | 15 cm | 40% PEO-PPy | 120 ± 30 nm | Young’s modulus: 108 ± 3.2 MPa to 115 ± 4.1 MPa, elongation at break: 40.1 ± 2.7 to 46.6 ± 3.4% | 0.0009–0.002 S/cm (4 point probe) | Tissue engineering | [205] | PEO modified with PPy. Conductivity of PEO-PPy: 0.24–0.31 S/cm, conductivity of PPy: 0.59 S/cm |
PANI | PAN | DMF | 18 kV | 0.5 mL/h | 15 cm | 1–3% | 200–600 nm | - | - | Photovoltaics | [206] | - |
PPy | 250–800 nm | - | - | - | ||||||||
PT | 200–650 nm | - | - | - | ||||||||
PPy | PVDF | DMF/Acetone | 10 kV | 0.7 mL/h | 14 cm | 3% | 325 ± 143 nm | Contact angle: 108.6 ± 0.1°, Young’s modulus: 27.4 MPa, capacitance: 3.59 × 10−10 F | - | Biomaterials | [207] | - |
PANI | 390 ± 138 nm | Contact angle: 111.0 ± 0.1°, Young’s modulus: 29.9 MPa, capacitance: 1.27 × 10−10 F | - | - | ||||||||
PANI-L-glutamic acid | 2512 ± 1182 nm | Contact angle: 112.5 ± 0.3°, Young’s modulus: 35.6 MPa, capacitance: 4.03 × 10−10 F | - | - | ||||||||
PANI-Emeraldine Base | PLGA | HFIP | 12.3–13.6 kV | 1 mL/h | - | 4–8% | 58.9 ± 14.2 to 184.7 ± 31.9 nm | Young’s Modulus: 91.7 ± 5.1 MPa (6% PANI) | 9.5 × 10−7 to ~10−3 S/cm (4-point probe) | Cardiac tissue engineering | [208] | - |
PANI | PCL | HFIP | 14–18 kV (negative voltage: 0.2–2.5 kV) | 1 mL/h | 10 cm | 0.3–3% | - | - | 1.34 ± 0.015 to 8.76 ± 0.02 uS/cm (solution) | Biomaterials | [209] | - |
MEH-PPV, P3HT | PVP | CHCl3 | 8 kV | 0.5 mL/h | 15 cm | 37.50% | 300–450 nm | - | 1.02–1.34 × 10−7 S/m (tunneling AFM) | Solar cells | [210] | Blend of MEH-PPV and PCBM electrospun with PVP. P3HT/PCBM added with spin coating |
PEDOT:PSS | PEO | H2O/DMF/Triton X-100 | 18 kV | 1.5 uL/min | 15 cm | 8% | 2000 nm | - | 1.8 S/cm (4-point probe) | Flexible, transparent supercapacitors | [211] | Mixed, then excess PEO removed with ethylene glycol. Conductivity of film of similar composition: 290–650 S/cm (4-point probe) |
PANI | PEO | CHCl3 | 5 kV | 0.6 mL/h | 25 cm | 93% | 678 ± 54 nm | - | 0.114 S/cm (EIS) | Supercapacitor | [212] | - |
81% | 491 ± 86 nm | - | 0.154 S/cm (EIS) | 12% CN% | ||||||||
PANI | PEO | CHCl3 | 7 kV | 0.5 mL/h | 7 cm | 70% | 500–2000 nm | Specific capacitance: 235.2 F/g | - | Hybrid capacitor | [213] | Mixed, then CNTs and activated carbon also electrosprayed. 1000–5000 nm nanoparticles |
Pind | PEO | CHCl3 | 15 kV | 0.5 mL/h | 15 cm | 90% | 100–1400 nm (average 669) | Specific capacitance: 155–238 F/g | - | Supercapacitor | [214] | - |
80% | Average 726 nm | Specific capacitance: 476–521 F/g | - | 10% CNT | ||||||||
Regioregular P3HT | PLA | CHCl3 | 9 kV | 2 mL/h | - | 37–44% | 100–4000 nm | - | - | Sensors | [215] | - |
PANI | PCL | HFIP | 5.8 kV | 0.3 mL/h | 55 cm | 9–20% | 145 ± 14 to 162 ± 27 nm | - | 4.1 × 10−5 S/cm to 7.0 × 10−4 S/cm (I–V plots) | H2O vapor, NO2 sensor | [216] | PANI dispersed in HCSA, then mixed with PCL |
PANI | PVP | 1:1 EtOH:DMF | 17 kV | 0.4 mL/h | 20 cm | - | >200 nm | - | - | H2 sensor | [217] | PANI/CSA mixed with SnCl2–2H2O, Al(NO3)3–9H2O, PVP, then PVP calcined |
Novel Need to be able poly(fluorenylene ethynylene)s-co-polythiophenes | PS | 3:1 DMF:THF | 20 kV | 1 mL/h | 25 cm | 10% | 200–800 nm | - | - | Nitroaromatics sensor | [218] | - |
PEDOT:PSS | PVP | DMF | 18 kV | 0.2 mL/h | 15 cm | 80% | 165.4 ± 58.0 nm to 171.8 ± 36.7 nm | - | - | Volatile organics sensor | [219] | PEDOT:PSS mixed with PVP and Multi-walled carbon nanotubes-COOH |
PANI/ poly(thiophene) based polymer | PMMA | N-methyl-2-pyrrolidone | 20 kV | 0.6 mL/h | 10 cm | 2% | 500 nm | - | - | N-butanol sensing | [220] | - |
PFO | PMMA | CHCl3 | 20 kV | 0.3 mL/h | 6 cm | 0.1–2% | 619 ± 14 nm | - | - | CHCl3 testing | [221] | - |
PANI | P3HB | 4:1 CHCl3:DMF | 15–28 kV | 3–17 µL/min | 20 cm | - | 452.9 ± 31.8 to 696.7 ± 185.3 nm | - | - | Ethanol sensor | [222] | PANI on SnO2 nanorods, with either Ni or Pd |
PPV | PVA | H2O | 10 kV | 0.3 mL/h | 10 cm | 1% | Around 200 nm | Contact angle: 85–131° | - | Aromatic organic solvent detection | [223] | Prepolymer blended with PVA and then electrospun, and then thermal treatment to convert to polymer |
PANI | PS | CHCl3 | 30 kV | - | 30 cm | 15% | 800–1000 nm | - | - | Glucose sensor | [224] | - |
PANI | PEO | 1:1 EtOH:CHCl3 | 10 kV | 0.2 mL/h | 10 cm | 8% | 250–500 nm | - | 105 to 107 Ω (impedance) | Humidity sensor | [225] | Conductance of film of same composition: 106 to 107 Ω (Impedance) |
PT | PAN | DMF | 12 kV | 0.01 mL/h | 8 cm | 3–23% | 600 ± 200 to 1300 ± 700 nm | - | - | Phosphate sensor | [226] | - |
PANI | Polyvinylbutyral, polyamide-6 | Formic acid | 27 kV | 0.6 mL/h | 15 cm | 20% | 326 nm | - | Hg sensing | [227] | - | |
PPV | PVA | H2O | 12 kV | 0.3 mL/h | 10 cm | - | 250 nm | - | - | Sudan dye detection | [228] | Prepolymer and PVA electrospun, then converted to polymer with heating |
PPy | PEO | EtOH/H2O | 16 kV | - | 14 cm | 50–80% | 100–600 nm | - | 2.28 × 10−7 to 2.54 × 10−5 S/cm (I–V curves) | IgG sensing | [229] | - |
PEDOT:PSS | PVA | H2O | 20 kV | 1.4 mL/h | 10 cm | 18% | 150–200 nm | Contact angle: 68°, Young’s modulus: 232 MPa, elongation at break: 11% | 0.88 mA (electrochemical current) | Carcinogen detector | [230] | - |
PANI | PU, PVA | Core: CHCl3, Shell: H2O/SDS/Acetic acid | - | 1:1–10:1 shell:core flow rate | 13 cm | 56% | 60 nm (core), 98–100 nm (shell) | Elongation at break: 248.3 ± 19.3% to 395.3 ± 51.1% | 0.019 ± 0.002 to 1.092 ± 0.272 × 10−3 S/cm (impedance) | Wearable pH sensor | [201] | Coaxial electrospinning of a PU core and a blended PANI/PVA shell |
- | Elongation at break: 300.5 ± 103.4% | 4.577 ± 0.472 S/cm (impedance) | Blend electrospun fibers | |||||||||
PEDOT:PSS | PEO | H2O | 15 kV | 0.1 mL/h | 15 cm | 10% | - | - | Up to 200 S/cm change from unprocessed nanofibers (from I–V curves) | Wearable flex sensor | [231] | - |
PEDOT:PSS | PEO | H2O | 23 kV | 0.1 mL/h | 15 cm | 5% | - | - | 13.82 mS/cm | - | [232] | - |
PANI | PAN | DMF | 20 kV | 1 mL/h | 10 cm | 10–40% | 153–190 nm | Contact angle: ~150°, Young’s modulus: 12.64 ± 2.91 MPa, elongation at break: | - | Oil/H2O emulsion separation | [233] | Core/shell electrospun nanofibers of same composition had the following properties: fiber diameter: 333 nm, contact angle: 150°, Young’s modulus: 302.8 ± 78.30 MPa, elongation at break: 47% ± 1% |
PEDOT:PSS | PEO | H2O | 22 kV | 1 mL/h | 11 cm | 4.5–6.5% | 106 ± 49 to 157 ± 65 nm | - | 3.09 × 10–5 to 6.10 S/cm (4-point probe) | Toxic protein removal | [234] | Blend of multiwalled carbon nanotubes, PEDOT:PSS, PEO, (3-glycidyloxypropyl)trimethoxysilane electrospun |
PCZ | PVDF | DMF | 20 kV | 1 mL/h | 15 cm | 4% | 650 ± 80 nm | Contact angle: 96°, Young’s modulus: 20.3 MPa, elongation at break: 24% | 2.33 × 10–4 S/cm (2-point probe) | Human motion energy harvesting | [235] | - |
PANI | 820 ± 180 nm | Contact angle: 94°, Young’s modulus: 22.8 MPa, elongation at break: 14% | 1.61 × 10–4 S/cm (2-point probe) | |||||||||
PEDOT:PSS | PVA | DMSO | 23 kV | 0.4 mL/h | 9 cm | 5% | 440 nm | Young’s modulus: 1.34–7.47 MPa, elongation at break: 2.99–9.93% | 0.67–41.5 S/cm (4-point probe) | Flexible thermoelectric generator | [236] | Blend electrospun then dip-coated with PEDOT:PSS, then coated with AgNPs |
PEDOT:PSS | Poly(N-isopropyl acrylamide-co-N-methylolacrylamide) | H2O | 20 kV | 0.1 mL/h | 12.5 cm | 3.8–19.9% | - | - | 0.085–11.2 S/cm (voltmeter) | Thermoresponsive composite | [237] | - |
Thin film | - | - | 0.084–192.3 S/cm (voltmeter) | |||||||||
PANI | PVA | H2O | 20 kV | 1.5 mL/h | 16 cm | 0.2–0.6% | 400–730 nm | Elongation at break: ~35–60% | Electrochromic device | [238] | Polymerization of PANI in solution with PVA, then electrospinning of blend | |
PANI | Silk fibroin | Formic acid | 15–30 kV | 0.1–0.8 mL/h | 12 cm | 2.5–30% | ~75–230 nm | Contact angle: ~107–120°, Elongation at break: ~1.5–3.75% | up to 0.5 S/cm (4-point probe) | Conductive textiles | [239] | - |
PPy | PMMA | DMF | 15 kV | 15 µL/h | 5 cm | 7.30% | 1170 ± 400 to 1980 ± 500 nm | - | Electrochromic device | [240] | PPy electrochemically polymerized in ionic liquid, then dissolved and mixed with PMMA | |
poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)] | Acrylonitrile butadiene rubber | 1:2 DCM: chlorobenzene | 13.2 kV | 0.1 mL/h | 19 cm | 3–7% | 422 ± 117 to 1370 ± 300 nm | - | Wearable electronics | [241] | - |
4.5. Coating with Conducting Polymers
ICP | Electrospun Polymer | Method | Solvent | Electrospinning Parameters | Nanofiber Diameter | Conductivity (Technique) | Other Properties | End Application | Ref. | Notes | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied Voltage | Flow Rate | Tip-to-Collector Distance | ||||||||||
PPy | 75/25 PLGA | In situ chemical oxidative polymerization | HFIP | 15 kV | 3 mL/h | 15 cm | 430 ± 180 to 520 ± 150 nm (total), 85 ± 41 nm (shell) | 7.4 ± 3.2 × 103 to 9.0 ± 6.0 × 104 Ω-s/square (surface resistivity) | - | Neural tissue engineering | [51] | - |
PANI | PAN | In situ chemical oxidative polymerization | DMF | 10 kV | 0.8 mL/h | - | 667.0 nm | - | Young’s modulus: ~475 MPa (initial modulus, PANI), elongation at break: ~10% | Gas sensor | [90] | Novel electrospinning device |
PPy | PU | In situ chemical oxidative polymerization | TFA | - | - | - | 80–808 nm, 60–90 nm (shell) | ~0.47 μS/cm (4-point probe | Reduced hydrophilicity with PPy coating | Nerve tissue engineering | [145] | - |
Chitosan-PU | ~0.45 μS/cm (4-point probe) | |||||||||||
In situ polymerized on electrospun CS-PU/functionalized MWCNT | ~2.7 μS/cm (4-point probe) | |||||||||||
PEDOT:Tosylate | PVP | Electrospinning PVP with oxidant, vapor phase polymerization with EDOT, then dissolving PVP in EtOH | Butanol/IPA | 20 kV | 2 mL/h | 15 cm | 700 nm (PEDOT:Tos) | Not measured but stable and dependent on strain | Elongation at break hypothesized to be 140% | - | [171] | Hollow shell |
Poly(N-(methacryl ethyl) pyrrole) | Hydrolyzed cellulose | Alkaline hydrolysis of electrospun substrate then in situ chemical oxidative polymerization | - | 18 kV | 0.015 mL/min | 20 cm | 531 ± 230 nm | Contact angle: 43.34 ± 0.77°, Young’s modulus: 0.564 ± 0.063 MPa, elongation at break: 6.401 ± 0.142% | Nerve regeneration | [242] | - | |
Poly(N-(2-hydroxyethyl) pyrrole) | 804 ± 265 nm | Contact angle: 32.14 ± 0.69°, Young’s modulus: 0.205 ± 0.074 MPa, elongation at break: 11.984 ± 0.879% | ||||||||||
Poly(3-(ethoxycarbonyl) thiophene) | 680 ± 231 nm | Contact angle: 89.21 ± 0.88°, Young’s modulus: 0.537 ± 0.096 MPa, elongation at break: 13.610 ± 0.527% | ||||||||||
Poly(3-thiophenethanol) | 653 ± 245 nm | Contact angle: 35.24 ± 1.84°, Young’s modulus: 0.417 ± 0.026 MPa, elongation at break: 4.188 ± 0.217% | ||||||||||
Poly(N-vinylpyrrole) | Hydrolyzed cellulose | Alkaline hydrolysis then in situ chemical oxidative polymerization | THF/DMF | 18 kV | - | 20 cm | 703 nm | Contact angle: 18.06–24.59° | Nerve regeneration | [245] | - | |
Poly(3-hexylthiophene) | 1130 nm | Contact angle: 41.98–58° | ||||||||||
PEDOT | Nitrile butadiene rubber, Poly(ethylene glycol dimethacrylate) | Crosslinking while electrospinning, then allowed to crosslink more, then in situ chemical oxidative polymerization of EDOT | CHCl3 | - | 1 mL/h | 10 cm | ~15,000 ± 500 nm | 4.6–5.8 S/cm (4-point probe) | Young’s modulus: 3.8–10.3 MPa, elongation at break: 48.3–75.1% | Muscle contraction and movement sensor | [244] | - |
PEDOT:PSS | PU | Dip coating in PEDOT:PSS | DMF | 15 kV | 0.8 mL/h | 30 cm | - | 29.7–200 S/m (sheet resistance) | Elongation at break: 40–230% | Stretchable conductors | [246] | - |
PEDOT | PMMA | PMMA electrospun with EDOT, then electrospun onto aqueous oxidant | DMF | 6–7 kV | 0.9 mL/h | - | 50 nm layer of PEDOT | 0.19–7.6 S/cm (4-point probe) | - | - | [248] | - |
PEDOT | PAA | PAA electrospun with EDOT then oxidative polymerization | DMF | 14 kV | 7 mL/h | 18 cm | 298.6–343.5 nm (~53.1–160.3 nm PEDOT coating) | 0.006–0.16 S/cm (4-point probe) | - | - | [249] | - |
PEDOT | PVP | PVP electrospun with oxidant and then vapor phase polymerization in chamber with EDOT, then dissolving PVP in MeOH | Butanol | 27 ± 1 kV | - | 15 cm | 350 ± 60 nm | 60 ± 10 S/cm (4-point probe) | - | - | [250] | Hollow shell |
PPy | PCL | PCL electrospun with Py and then polymerized with oxidant, then electrospun | 9:1 CHCl3:DMF | 20 kV | 1 mL/h | 13 cm | 200–500 nm | 8.14 × 10−7–15.60 × 10−7 S/cm (4-point probe) | Contact angle: 93–103°, Young’s modulus: 8.50–10.50 MPa, elongation at break: 320.07–540.05% | Bone tissue engineering | [251] | - |
PPy | PCL | PCL electrospun then immersed in Py and oxidant containing baths, then PCL core removed with DCM | TFE | 17 kV | 1 mL/h | 14 cm | 598 ± 213 nm to 763 ± 327 nm | - | - | Photothermal therapy | [252] | Hollow shell |
PANI | PCL | PANi incorporated into PVA hydrogel and then cast onto PCL | 3:1 CHCl3:MeOH | 10 kV | 0.5 mL/h | 10 cm | - | 3.23 × 10−2 S/cm (max, 4-point probe) | Contact angle: 27.63 ± 0.35° to 58.60 ± 0.53°, Young’s modulus: 49.70 ± 0.42 to 52.15 ± 0.41 MPa, elongation at break: 14.6 ± 0.23% to 15.3 ± 0.21% | - | [253] | - |
PEDOT:PSS | PCL | Dopamine-modified electrospun PCL dip-coated in PEDOT:PSS | 15:85 EtOH:DCM | 1 kV | 2.5 mL/min | - | - | 5 × 104 to 17 × 106 Ω/sq (4-point probe) | Contact angle: 0° | Muscle regeneration | [254] | - |
PANI | PCL | Electrospun PCL/osteogenon/gelatin/calcium nanoparticle composite printed with PANI using inkjet printer | 1:1 CHCl3:MeOH | 25 kV | 1.5 mL/h | 20 cm | 2000–4000 nm | 10−3 S/cm (electrochemical impedance spectroscopy) | - | Bone tissue engineering | [255] | - |
PPy | PLGA | In situ polymerization of PPy on PLGA mat | Trifluoroethanol (TFE) | 20 kV | 0.6 mL/h | 20 cm | 936 ± 412 nm (about 150 nm thick layer) | 0.118 S/cm (4-point probe) | - | Peripheral nerve regeneration | [256] | Conductivity of PPy film: 0.302 S/cm, conductivity of PPy/PLGA film: 5.36 × 10−3 S/cm |
MEH-PPV, PEDOT:PSS | PVP | TiO2/PVP electrospun, then PVP removed by calcination. MEH-PPV then spin-coated. PEDOT:PSS was then deposited | EtOH | 14 kV | - | 8 cm | ~200 nm thick MEH-PPV and 70 nm thick PEDOT:PSS | - | - | Photovoltaics | [257] | - |
MEH-PPV, P3HT | PVP | Blend of MEH-PPV and PCBM electrospun with PVP. P3HT/PCBM added with spin coating | CHCl3 | 8 kV | 0.5 mL/h | 15 cm | 300–450 nm | 1.02–1.34 × 10−7 S/m (tunneling AFM) | - | Solar cells | [210] | Blend, core/shell |
PEDOT | PVA | Blend of PVA and graphene oxide electrospun, then PEDOT electrochemically polymerized on surface | H2O | 15 kV | 1.2 mL/h | 15 cm | Globular porous structure | - | 224.27 F/g (specific capacitance) | Supercapacitors | [258] | PEDOT film specific capacitance: 167.92 F/g, PEDOT/PVA nanofiber specific capacitance: 182.73 F/g |
PANI | PMMA | In situ polymerization | THF | 7 kV | - | 6 cm | 2500–3500 nm, PANI nanoparticles | - | - | Ammonia sensor | [259] | - |
Polyquinoxaline-based | PVA | PVA electrospun then modified with amine and dip coated in polyquinoxaline solution | 1.11:3:7 Tetraethoxysilane:EtOH:water | 20 kV | 0.5 mL/h | 10 cm | 360 ± 90 nm (before dip coating) | - | - | Organophosphorous compound detection | [260] | - |
PANI | PMMA | PMMA electrospun, then in situ polymerization of aniline and immobilization of Au nanoparticles | 7:3 DMF:acetone | 30 kV | 1 mL/h | 20 cm | 400–500 nm | 50 ± 15 S/m | - | O2 radical sensing with immobilized enzyme | [261] | - |
PEDOT:PSS | PLLA | PLLA electrospun and then EDOT electrochemically polymerized | CHCl3 | - | 0.25 mL/h | 10 cm | 110 ± 8 nm (30 ± 8 nm PEDOT coating) | 19.3 ± 5 MΩ-s (impedance) | - | Glucose detector | [262] | - |
PPy | PAN | PAN electrospun with oxidant and then exposed to Py vapors | DMF | 8–22 kV | 1–3 mL/h | 9–23 cm | 650 ± 10 nm (PAN) | - | - | Glucose detector | [263] | - |
poly-4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde (PBIBA) | Nylon 6,6 | Nylon, MWCNT mixtures electrospun then PBIBA polymerized electrochemically | Formic acid | 15 kV | 1.0 mL/h | 10 cm | 70 ± 20 nm (nylon/MWCNT) | - | Contact angle: 66.65 ± 0.76° to 67.81 ± 2.57° | Glucose detector | [264] | - |
PEDOT | NBR/PEGDM | NBR/PEGDM electrospun then exposed to EDOT vapor, then immersed in oxidant | CHCl3 | 14 kV | 1.5 mL/h | 10 cm | 6260 ± 2990 nm | 6 ± 3 S/cm | - | Non-Hodgkin lymphoma gene detector | [265] | - |
PPy | PVP | PVP electrospun, then in situ vapor phase polymerization of PPy with Au nanoparticles | DMF | 20 kV | 0.8 mL/h | 18 cm | 100 nm (PPy capsules), 20 nm (wall thickness) | 5.3 × 10−5 S/cm to 8.5 × 10−3 S/cm (4-point probe) | - | Wearable NH3 sensor | [266] | - |
PANI | PVDF | In situ chemical oxidative polymerization of PANI on electrospun PVDF | 1:1 DMF:acetone | 10 kV | - | 8 cm | - | Retained until ultimate strain | Elongation at break: 110.53% | Strain sensor | [267] | - |
PPy | PLA-Silk Fibroin-Collagen | In situ chemical oxidative polymerization of PANI on electrospun PVDF | HFIP | 20 kV | 0.5 mL/h | 20 cm | 122 ± 28 nm, PPy coating amorphous | - | - | Motion, respiration sensor | [268] | - |
PEDOT:PSS | Poly (vinylidene fluoride-co-hexafluoropropene) | In situ vapor oxidative polymerization of PANI on electrospun PVDF-oxidant collected on PEDOT:PSS/PET substrates | 1:1 DMF:THF | 10.5 kV | 6–8 μL/min | 3–12 cm | 480 ± 34 nm | 7 × 104 Ω/sq (4-point probe) | - | Wearable pressure sensor | [269] | - |
PPy | PAN | Double-conjugate electrospinning then in situ chemical oxidative polymerization | DMF | - | - | - | 10–70 nm coating | 10.5 S/cm | - | - | [270] | Conductivity and elongation at break increase to 94.37 S/cm and 40%, respectively, with the addition of graphene |
PPy | PAN | PAN electrospun then PPy solution dripped on mats | DMF | 16 kV | 0.65–0.8 mL/h | 20 cm | - | - | - | Photocatalytic decontamination of water | [271] | - |
PEDOT:PSS | PMMA-TiO2 | PMMA electrospun with TiO2 precursor then calcined, then immersed in oxidant, then vapor phase polymerization of PEDOT | 1:1 CHCl3:DMF | 25 kV | 0.5 mL/min | 11 cm | 269–412 nm | - | - | Photocatalytic decontamination of water | [272] | - |
PANI | PS | PS mat in situ chemical oxidative polymerization with PANI | DMF | 17 kV | 0.5 mL/h | 15 cm | 1600 ± 400 nm (PS) | 0.016 S/cm | Contact angle: 106 ± 2° | Adsorption of heavy metal ions | [273] | - |
PANI | PAN | In situ chemical oxidative polymerization | DMF | 20 kV | 1 mL/h | 10 cm | 333 nm | - | Contact angle: ~150°, Young’s modulus: 302.8 ± 78.30 MPa, elongation at break: 47 ± 1% | Oil/water emulsion separation | [233] | Electrospun PANI/PAN blend (10–40 wt.% PANI) has Young’s modulus of 12.64 ± 2.91 MPa |
PANI | PU | In situ chemical oxidative polymerization | DMF | 20 kV | 0.1 mL/h | 12 cm | 155–270 nm (average 207 nm) | - | - | Opium alkaloid detection | [274] | - |
PANI | Polycaprolactam | In situ chemical oxidative polymerization | Formic acid | “+10 kV to −5 kV” | 0.5 mL/h | 15 cm | 190–270 nm | - | - | Drug detection in human plasma | [275] | - |
PEDOT:PSS | PU | Electrospun MWCNT/lauric Acid/PU dip coated in PEDOT:PSS | DMF | 12 kV | 0.8 mL/h | 25 cm | 200–300 nm | 13.3 to 39.7 S/cm (sheet resistance) | Elongation at break: 200–650% | Stretchable conductor | [276] | - |
PEDOT:PSS | PVA | Blend electrospun then dip coated then coated with AgNPs | DMSO | 23 kV | 0.4 mL/h | 9 cm | 440 nm | 0.67 to 41.5 S/cm (4-point probe) | Young’s modulus: 1.34–7.47 MPa, elongation at break: 2.99–9.93% | Flexible thermoelectric generator | [236] | Combination of blend (5 wt.% PEDOT in PVA) and core/shell |
PPy | PLA | PLA electrospun then immersed in oxidant then vapor phase polymerization | CHCl3 | 15–25 kV | 1.5–2.5 mL/h | 15 cm | 7620 ± 0.13 to 9300 ± 0.15 nm | Up to 0.5 S/cm (4-point probe) | - | Shape memory device | [277] | - |
5. Applications
5.1. Bioomedical Applications
5.1.1. Wound Healing and Therapy
5.1.2. Tissue Scaffolds
5.2. Electronic Devices
5.2.1. Photovoltaics
5.2.2. Capacitors
5.2.3. Field-Effect Transistors and Diodes
5.3. Sensing
5.3.1. Gas and Humidity Sensors
5.3.2. Ion Sensors
5.3.3. Biosensors
5.3.4. Wearable Sensors
5.4. Separatory and Purifying Materials
5.4.1. Water Purification
5.4.2. Biopurification
5.5. Smart Devices
5.5.1. Pressure- and Temperature-Dependent Applications
5.5.2. Optical Applications
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Inherently conductive polymer |
DMF | N,N-Dimethylformamide |
Eg | Bandgap |
e-PU | Electrospun polyurethane |
FET | Field-effect transistor |
HDF | Human dermal fibroblasts |
LED | Light-emitting diode |
MEH-PPV | Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] |
Mv | Viscosity-average molecular weight |
Mw | Weight-average molecular weight |
MWCNT | Multiwalled carbon nanotubes |
NBR | Nitrile butadiene rubber |
OLED | Organic light-emitting diode |
OTFET | Organic thin-film transistor |
P3AT | Poly(3-alkylthiophene) |
P3HT | Poly(3-hexylthiophene) |
PA | Polyacetylene |
PA-6 | Polycaprolactam |
PAA | Poly(acrylic acid) |
PAN | Poly(acrylonitrile) |
PANI | Polyaniline |
PCL | Polycaprolactone |
PCZ | Polycarbazole |
PDBTT | Poly(N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo [3,4-c]pyrrole-1,4-dione-alt-thieno [3,2-b]thiophene) |
PE | Polyethylene |
PEDOT | Poly(3,4-ethylenedioxythiophene) |
PEDOT:PSS | Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) |
PEGDMA | Poly(ethylene glycol) dimethacrylate |
PEO | Poly(ethylene oxide) |
PFO | Polyfluorene |
PindPLGA | PolyindolePoly(lactic-co-glycolic acid) |
PMMA | Poly(methyl methacrylate) |
PNVPY | Poly(N-vinylpyrrole) |
PP | Polypropylene |
PPV | Poly(phenylene vinylene) |
PPy | Polypyrrole |
PS | Polystyrene |
PSS | Poly(styrene sulfonate) |
PT | Polythiophene |
PVA | Poly(vinyl alcohol) |
PVAc | Poly(vinyl acetate) |
PVC | Poly(vinyl chloride) |
PVDF | Poly(vinylidene difluoride) |
PVP | Poly(N-vinylpyrrolidone) |
RH | Relative humidity |
SEM | Scanning electron micrograph |
TCB | 1,2,4-trichlorobenzene |
TEM | Tunneling electron micrograph |
References
- Yanilmaz, M.; Sarac, A.S. A review: Effect of conductive polymers on the conductivities of electrospun mats. Text. Res. J. 2014, 84, 1325–1342. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.C. Conjugated and Conducting Organic Polymers: The First 150 Years. Chempluschem 2020, 85, 1412–1429. [Google Scholar] [CrossRef] [PubMed]
- Murad, A.R.; Iraqi, A.; Aziz, S.B.; Abdullah, S.N.; Brza, M.A. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers 2020, 12, 2627. [Google Scholar] [CrossRef] [PubMed]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef]
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.C.; Evenson, S.J.; McCausland, C.B. Fluorescent thiophene-based materials and their outlook for emissive applications. Chem. Commun. 2015, 51, 4528–4543. [Google Scholar] [CrossRef]
- Dubey, D.K.; Sahoo, S.; Wang, C.-W.; Jou, J.-H. Solution process feasible highly efficient white organic light emitting diode. Org. Electron. 2019, 69, 232–240. [Google Scholar] [CrossRef]
- Braveenth, R.; Lee, H.; Song, M.-G.; Raagulan, K.; Park, Y.H.; Kim, S.; Kwon, J.H.; Chai, K.Y. Triazine-dibenzocarbazole based bipolar host materials for highly luminescent green and yellow phosphorescent organic light emitting diodes. Dye. Pigment. 2019, 163, 607–614. [Google Scholar] [CrossRef]
- Bronnbauer, C.; Osvet, A.; Brabec, C.J.; Forberich, K. Semitransparent Organic Light Emitting Diodes with Bidirectionally Controlled Emission. ACS Photonics 2016, 3, 1233–1239. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Li, M.; He, G.; Guo, X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120, 2879–2949. [Google Scholar] [CrossRef] [PubMed]
- Sizov, A.S.; Trul, A.A.; Chekusova, V.; Borshchev, O.V.; Vasiliev, A.A.; Agina, E.V.; Ponomarenko, S.A. Highly Sensitive Air-Stable Easily Processable Gas Sensors Based on Langmuir-Schaefer Monolayer Organic Field-Effect Transistors for Multiparametric H2S and NH3 Real-Time Detection. ACS Appl. Mater. Interfaces 2018, 10, 43831–43841. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, L.; Shi, J.; Li, C.; Shi, Y.; Tan, J.; Li, H.; Jiang, H.; Hu, Y.; Liu, X.; et al. Relieving the Photosensitivity of Organic Field-Effect Transistors. Adv. Mater. 2020, 32, e1906122. [Google Scholar] [CrossRef] [PubMed]
- Paterson, A.F.; Singh, S.; Fallon, K.J.; Hodsden, T.; Han, Y.; Schroeder, B.C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T.D. Recent Progress in High-Mobility Organic Transistors: A Reality Check. Adv. Mater. 2018, 30, e1801079. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Yu, J.; Zhuang, X.; Li, D.; Liu, Y.; Gao, Z.; Sun, T.; Wang, F.; Yu, X. Phase Separation of P3HT/PMMA Blend Film for Forming Semiconducting and Dielectric Layers in Organic Thin-Film Transistors for High-Sensitivity NO2 Detection. ACS Appl. Mater. Interfaces 2019, 11, 44521–44527. [Google Scholar] [CrossRef]
- Wadsworth, A.; Chen, H.; Thorley, K.J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T.D.; Sirringhaus, H.; et al. Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. J. Am. Chem. Soc. 2020, 142, 652–664. [Google Scholar] [CrossRef]
- Wei, C.; Fan, L.; Rao, W.; Bai, Z.; Xu, W.; Bao, H.; Xu, J. Electrothermochromic paper fabricated by depositing polypyrrole on one side. Cellulose 2017, 24, 5187–5196. [Google Scholar] [CrossRef]
- Jarosz, T.; Gebka, K.; Stolarczyk, A.; Domagala, W. Transparent to Black Electrochromism—The “Holy Grail” of Organic Optoelectronics. Polymers 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Yuksel, R.; Ekber, A.; Turan, J.; Alpugan, E.; Hacioglu, S.O.; Toppare, L.; Cirpan, A.; Gunbas, G.; Unalan, H.E. A Novel Blue to Transparent Polymer for Electrochromic Supercapacitor Electrodes. Electroanalysis 2018, 30, 266–273. [Google Scholar] [CrossRef]
- Hu, F.; Yan, B.; Sun, G.; Xu, J.; Gu, Y.; Lin, S.; Zhang, S.; Liu, B.; Chen, S. Conductive Polymer Nanotubes for Electrochromic Applications. ACS Appl. Nano Mater. 2019, 2, 3154–3160. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Rani, N.; Saxena, P.; Bhandari, H.; Dhawan, S.K. Development of polyaniline/zinc oxide nanocomposite impregnated fabric as an electrostatic charge dissipative material. Polym. Int. 2015, 64, 1096–1103. [Google Scholar] [CrossRef]
- Wang, H.; Sun, L.; Fei, G.; Fan, J.; Shi, X. A facile approach to fabricate waterborne, nanosized polyaniline-graft-(sulfonated polyurethane) as environmental antistatic coating. J. Appl. Polym. Sci. 2017, 134, 45412. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M.; Ali, S.A.; Dafalla, H.D.M. Synthesis, characterization, and utilization of a diallylmethylamine-based cyclopolymer for corrosion mitigation in simulated acidizing environment. Mater. Sci. Eng. C 2019, 100, 897–914. [Google Scholar] [CrossRef]
- Kong, P.; Zhang, C.; Du, Z.; Wang, H.; Zou, W. Preparation of antistatic epoxy resin by functionalization of MWCNTs with Fe3O4-modified polyaniline under a magnetic field. Appl. Phys. A 2019, 125, 329. [Google Scholar] [CrossRef]
- Mirmohseni, A.; Azizi, M.; Seyed Dorraji, M.S. A promising ternary nanohybrid of Copper@Zinc oxide intercalated with polyaniline for simultaneous antistatic and antibacterial applications. J. Coat. Technol. Res. 2019, 16, 1411–1422. [Google Scholar] [CrossRef]
- Aly, K.I.; Younis, O.; Mahross, M.H.; Orabi, E.A.; Abdel-Hakim, M.; Tsutsumi, O.; Mohamed, M.G.; Sayed, M.M. Conducting copolymers nanocomposite coatings with aggregation-controlled luminescence and efficient corrosion inhibition properties. Prog. Org. Coat. 2019, 135, 525–535. [Google Scholar] [CrossRef]
- Jia, X.; Ge, Y.; Shao, L.; Wang, C.; Wallace, G.G. Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustain. Chem. Eng. 2019, 7, 14321–14340. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, X.; Hu, K.; Wang, Y.; Gan, Z.; Li, Y.; Hu, G.; Peng, Z.; Du, K. Conductive Polymers Encapsulation To Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 18270–18280. [Google Scholar] [CrossRef]
- Chhin, D.; Padilla-Sampson, L.; Malenfant, J.; Rigaut, V.; Nazemi, A.; Schougaard, S.B. Conducting Polymers Doped with Bifunctional Copolymers for Improved Organic Batteries. ACS Appl. Energy Mater. 2019, 2, 7781–7790. [Google Scholar] [CrossRef]
- Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. [Google Scholar] [CrossRef] [Green Version]
- Lakard, B.; Ploux, L.; Anselme, K.; Lallemand, F.; Lakard, S.; Nardin, M.; Hihn, J.Y. Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 2009, 75, 148–157. [Google Scholar] [CrossRef]
- Rivers, T.J.; Hudson, T.W.; Schmidt, C.E. Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications. Adv. Funct. Mater. 2002, 12, 33–37. [Google Scholar] [CrossRef]
- Wallace, G.G.; Smyth, M.; Zhao, H. Conducting electroactive polymer-based biosensors. TrAC Trends Anal. Chem. 1999, 18, 245–251. [Google Scholar] [CrossRef]
- Kim, D.H.; Richardson-Burns, S.M.; Hendricks, J.L.; Sequera, C.; Martin, D.C. Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response. Adv. Funct. Mater. 2007, 17, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843. [Google Scholar] [CrossRef]
- Huang, L.; Zhuang, X.; Hu, J.; Lang, L.; Zhang, P.; Wang, Y.; Chen, X.; Wei, Y.; Jing, X. Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules 2008, 9, 850–858. [Google Scholar] [CrossRef]
- Garner, B.; Georgevich, A.; Hodgson, A.J.; Liu, L.; Wallace, G.G. Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth. J. Biomed. Mater. Res. 1999, 44, 121–129. [Google Scholar] [CrossRef]
- Guiseppi-Elie, A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials 2010, 31, 2701–2716. [Google Scholar] [CrossRef] [PubMed]
- Melling, D.; Martinez, J.G.; Jager, E.W.H. Conjugated Polymer Actuators and Devices: Progress and Opportunities. Adv. Mater. 2019, 31, 1808210. [Google Scholar] [CrossRef] [PubMed]
- Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876–921. [Google Scholar] [CrossRef]
- Runsewe, D.; Betancourt, T.; Irvin, J.A. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. Materials 2019, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ozlu, B.; Eom, T.; Martin, D.C.; Shim, B.S. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens. Bioelectron. 2020, 170, 112620. [Google Scholar] [CrossRef] [PubMed]
- Mantione, D.; Del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Tomczykowa, M.; Plonska-Brzezinska, M.E. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Guzinski, M.; Jarvis, J.M.; D’Orazio, P.; Izadyar, A.; Pendley, B.D.; Lindner, E. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate “Water Layer” Test. Anal. Chem. 2017, 89, 8468–8475. [Google Scholar] [CrossRef]
- Kai, D.; Prabhakaran, M.P.; Jin, G.; Ramakrishna, S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J. Biomed. Mater. Res. Part A 2011, 99A, 376–385. [Google Scholar] [CrossRef]
- Lee, J.Y.; Bashur, C.A.; Goldstein, A.S.; Schmidt, C.E. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30, 4325–4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahlman, M.; Fabiano, S.; Gueskine, V.; Simon, D.; Berggren, M.; Crispin, X. Interfaces in organic electronics. Nat. Rev. Mater. 2019, 4, 627–650. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef] [PubMed]
- Cooley, J.F. Apparatus for Electrically Dispersing Fluids. U.S. Patent 692,631, 4 February 1902. [Google Scholar]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Velasco Barraza, R.D.; Alvarez Suarez, A.S.; Villareal Gómez, L.J.; Paz Gonzalez, J.A.; Iglesias, A.L.; Vera Graziano, R. Designing a Low Cost Electrospinning Device for Practical Learning in a Bioengineering Biomaterials Course. Mex. J. Biomed. Eng. 2016, 37, 7–16. [Google Scholar] [CrossRef] [Green Version]
- GKKReddy. DIY Electrospinning System. Available online: https://www.instructables.com/id/DIY-Electrospinning-System/ (accessed on 25 September 2022).
- Svensson, B. Construction and Design of an Electro-Spinning Production Unit; Lund University: Lund, Sweden, 2015. [Google Scholar]
- Tebyetekerwa, M.; Ramakrishna, S. What Is Next for Electrospinning? Matter 2020, 2, 279–283. [Google Scholar] [CrossRef] [Green Version]
- VentureRadar. Top Electrospinning Companies. Available online: https://www.ventureradar.com/search/ranked/Electrospinning/ (accessed on 25 September 2022).
- Dos Santos, D.M.; Correa, D.S.; Medeiros, E.S.; Oliveira, J.E.; Mattoso, L.H.C. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 45673–45701. [Google Scholar] [CrossRef]
- Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Padhye, R.; Kyratzis, I.L.; Truong, Y.B.; Arnold, L. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011, 82, 129–147. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.; Han, Y.; Jiang, Q.; Zhan, C.; Zhang, K.; Li, Z.; Zhang, R. Structural design and environmental applications of electrospun nanofibers. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106009. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.R.; Bhattarai, N.; Yi, H.K.; Hwang, P.H.; Cha, D.I.; Kim, H.Y. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 2004, 25, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E.K.; Guo, Z. Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. WIREs Nanomed. Nanobiotechnol. 2016, 8, 654–677. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Ding, F.; Williams, D.F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014, 35, 6143–6156. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Prabhakaran, M.P.; Ramakrishna, S. Strategies for regeneration of components of nervous system: Scaffolds, cells and biomolecules. Regen. Biomater. 2015, 2, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Angius, D.; Wang, H.; Spinner, R.J.; Gutierrez-Cotto, Y.; Yaszemski, M.J.; Windebank, A.J. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials 2012, 33, 8034–8039. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Zhang, E.; Yang, L.; Yuan, H.; Tu, W.; Zhang, H.; Yin, Z.; Shen, W.; Chen, X.; et al. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater. 2018, 66, 141–156. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Streubel, P.N.; Duan, B. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater. 2017, 62, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Huh, B.K.; Kim, S.N.; Lee, J.Y.; Park, C.G.; Mikos, A.G.; Choy, Y.B. Application of materials as medical devices with localized drug delivery capabilities for enhanced wound repair. Prog. Mater. Sci. 2017, 89, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Im, J.S.; Lee, Y.-S.; Kim, H.-I. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur. Polym. J. 2011, 47, 1893–1902. [Google Scholar] [CrossRef]
- Chen, S.; Li, R.; Li, X.; Xie, J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 188–213. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Dadhich, P.; Srivas, P.K.; Das, B.; Maulik, D.; Dhara, S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 2017, 5, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Dhand, C.; Venkatesh, M.; Barathi, V.A.; Harini, S.; Bairagi, S.; Goh Tze Leng, E.; Muruganandham, N.; Low, K.Z.W.; Fazil, M.; Loh, X.J.; et al. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials 2017, 138, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-D.; Yan, X.; Zhang, Z.-H.; Yu, G.-F.; Han, W.-P.; Zhang, J.-C.; Long, Y.-Z. Electrospun PEDOT:PSS/PVP Nanofibers for CO Gas Sensing with Quartz Crystal Microbalance Technique. Int. J. Polym. Sci. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Meng, S.; Ma, W.; Pionteck, J.; Gnanaseelan, M.; Zhou, Z.; Sun, B.; Qin, Z.; Zhu, M. Fabrication and gas sensing behavior of poly(3,4-ethylenedioxythiophene) coated polypropylene fiber with engineered interface. React. Funct. Polym. 2017, 112, 74–80. [Google Scholar] [CrossRef]
- Zhu, M.; Han, J.; Wang, F.; Shao, W.; Xiong, R.; Zhang, Q.; Pan, H.; Yang, Y.; Samal, S.K.; Zhang, F.; et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mater. Eng. 2017, 302, 1600353. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Fan, G.; Yu, J.; Gao, J.; Sun, G.; Ding, B. Electreted polyetherimide–silica fibrous membranes for enhanced filtration of fine particles. J. Colloid Interface Sci. 2015, 439, 12–20. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Magu, T.O.; Agobi, A.U.; Hitler, L.; Dass, P.M. A Review on Conducting Polymers-Based Composites for Energy Storage Application. J. Chem. Rev. 2019, 1, 19–34. [Google Scholar] [CrossRef]
- Joly, D.; Jung, J.-W.; Kim, I.-D.; Demadrille, R. Electrospun materials for solar energy conversion: Innovations and trends. J. Mater. Chem. C 2016, 4, 10173–10197. [Google Scholar] [CrossRef]
- Self, E.C.; Naguib, M.; Ruther, R.E.; McRen, E.C.; Wycisk, R.; Liu, G.; Nanda, J.; Pintauro, P.N. High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats. ChemSusChem 2017, 10, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lou, Z.; Chen, D.; Jiang, K.; Shen, G. Polymer-Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Adv. Mater. Technol. 2016, 1, 1600136. [Google Scholar] [CrossRef]
- Wu, S.; Liu, P.; Zhang, Y.; Zhang, H.; Qin, X. Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens. Actuators B: Chem. 2017, 252, 697–705. [Google Scholar] [CrossRef]
- Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive polymers for smart textile applications. J. Ind. Text. 2017, 48, 612–642. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT:PSS-Based Conductive Textiles and Their Applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismar, E.; Kursun Bahadir, S.; Kalaoglu, F.; Koncar, V. Futuristic Clothes: Electronic Textiles and Wearable Technologies. Glob. Chall. 2020, 4, 1900092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, J.L.; Andriolo, J.M.; Murphy, J.P.; Ross, B.M. Electrospinning for nano- to mesoscale photonic structures. Nanophotonics 2016, 6, 765–787. [Google Scholar] [CrossRef]
- Bessaire, B.; Mathieu, M.; Salles, V.; Yeghoyan, T.; Celle, C.; Simonato, J.P.; Brioude, A. Synthesis of Continuous Conductive PEDOT:PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics. ACS Appl. Mater. Interfaces 2017, 9, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Ding, Y.; Duan, Y.; Su, J.; Yin, Z.; Huang, Y.A. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics. Small 2018, 14, 1703521. [Google Scholar] [CrossRef] [PubMed]
- Inzelt, G. Conducting polymers: Past, present, future. J. Electrochem. Sci. Eng. 2018, 8, 3–37. [Google Scholar] [CrossRef] [Green Version]
- Ikushima, K.; John, S.; Ono, A.; Nagamitsu, S. PEDOT/PSS bending actuators for autofocus micro lens applications. Synth. Met. 2010, 160, 1877–1883. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Shoaie, I.S.; Khalilzadeh, M.A.; Asl, M.S.; Van Le, Q.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent developments in conducting polymers: Applications for electrochemistry. RSC Adv. 2020, 10, 37834–37856. [Google Scholar] [CrossRef]
- Drobny, G.J. Specialty Polymers. In Giant Molecules; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 405–423. [Google Scholar]
- Swager, T.M. 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Macromolecules 2017, 50, 4867–4886. [Google Scholar] [CrossRef]
- Namsheer, K.; Chandra Sekhar, R. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Pochan, J.M.; Pochan, D.F.; Rommelmann, H.; Gibson, H.W. Kinetics of doping and degradation of polyacetylene by oxygen. Macromolecules 1981, 14, 110–114. [Google Scholar] [CrossRef]
- Hu, R.; Farrington, G.C. Stability of Undoped and Oxidized Polyacetylene. J. Electrochem. Soc. 1984, 131, 819–823. [Google Scholar]
- Szuwarzyński, M.; Wolski, K.; Zapotoczny, S. Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes. Polym. Chem. 2016, 7, 5664–5670. [Google Scholar] [CrossRef]
- Irvin, J.A.; Schwendeman, I.; Lee, Y.; Abboud, K.A.; Reynolds, J.R. Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2164–2178. [Google Scholar] [CrossRef]
- Johansson, T.; Mammo, W.; Svensson, M.; Andersson, M.R.; Inganäs, O. Electrochemical bandgaps of substituted polythiophenes. J. Mater. Chem. 2003, 13, 1316–1323. [Google Scholar] [CrossRef]
- Seo, K.-D.S.; Park, D.-S.P.; Shimz, Y.-B. Spectroelectrochemical and Electrochromic Characterization of a Conductive Polymer Bearing Both Electron Donor and Acceptor Groups. J. Electrochem. Soc. 2022, 169, 020555. [Google Scholar] [CrossRef]
- Sato, M.-A.; Tanaka, S.; Kaeriyama, K. Soluble conducting polymers by electrochemical polymerization of thiophenes having long alkyl substituents. Synth. Met. 1987, 18, 229–232. [Google Scholar] [CrossRef]
- Andriianova, A.N.; Biglova, Y.N.; Mustafin, A.G. Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv. 2020, 10, 7468–7491. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, G.R.; Ratner, M.A.; Marks, T.J. Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects. J. Am. Chem. Soc. 2005, 127, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Gadient, J.; Groch, R.; Lind, C. An in depth study of solvent effects on yield and average molecular weight in poly(3-hexylthiophene). Polymer 2017, 115, 21–27. [Google Scholar] [CrossRef]
- Heywang, G.; Jonas, F. Poly(alkylenedioxythiophene)s—New, very stable conducting polymers. Adv. Mater. 1992, 4, 116–118. [Google Scholar] [CrossRef]
- Dietrich, M.; Heinze, J.; Heywang, G.; Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem. 1994, 369, 87–92. [Google Scholar] [CrossRef]
- Kumar, A.; Reynolds, J.R. Soluble Alkyl-Substituted Poly(ethylenedioxythiophenes) as Electrochromic Materials. Macromolecules 1996, 29, 7629–7630. [Google Scholar] [CrossRef]
- Daugaard, A.E.; Hvilsted, S.; Hansen, T.S.; Larsen, N.B. Conductive Polymer Functionalization by Click Chemistry. Macromolecules 2008, 41, 4321–4327. [Google Scholar] [CrossRef]
- Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. Method of imparting antistatic properties to a substrate by coating the substrate with a novel polythiophene. U.S. Patent 5035926A, 30 July 1991. [Google Scholar]
- Tucker, N.; Stanger, J.J.; Staiger, M.P.; Razzaq, H.; Hofman, K. The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fibers Fabr. 2012, 7, 155892501200702S10. [Google Scholar] [CrossRef] [Green Version]
- Ghosal, K.; Agatemor, C.; Tucker, N.; Kny, E.; Thomas, S. Electrical Spinning to Electrospinning: A Brief History; Soft Matter Series No., 7, Kny, E., HGhosal, K., Thomas, S., Eds.; The Royal Society of Chemistry: London, UK, 2018; pp. 1–23. [Google Scholar]
- Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005; p. 396. [Google Scholar]
- Baji, A.; Mai, Y.-W.; Wong, S.-C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703–718. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Yflow. Coaxial Electrospraying & Electrospinning Machine & Equipment. Available online: http://www.yflow.com/electrospinning-machine/electrospinning-industrial-machine/ (accessed on 25 September 2022).
- Innovenso. Nanospinner 416 Industrial Electrospinning/Spraying Line. Available online: https://www.inovenso.com/portfolio-view/nanospinner416/ (accessed on 25 September 2022).
- Elmarco. Production Lines. Available online: https://www.elmarco.com/production-lines (accessed on 25 September 2022).
- Gomollon-Bell, F. Nanofibers Put a New Spin on COVID-19 Masks. Chemical & Engineering News. 22 November 2020. Available online: https://cen.acs.org/materials/nanomaterials/Nanofibers-put-new-spin-COVID/98/i45 (accessed on 1 December 2022).
- Abdel-Hady, F.; Alzahrany, A.; Hamed, M. Experimental Validation of Upward Electrospinning Process. ISRN Nanotechnol. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 4836–4846. [Google Scholar] [CrossRef] [Green Version]
- Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221. [Google Scholar] [CrossRef]
- Esfahani, H.; Jose, R.; Ramakrishna, S. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications. Materials 2017, 10, 1238. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006, 1, 15–30. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Koski, A.; Yim, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004, 58, 493–497. [Google Scholar] [CrossRef]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.-H.; Yu, J.-Y.; Zeng, H.-M. Controlling numbers and sizes of beads in electrospun nanofibers. Polym. Int. 2008, 57, 632–636. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Arrighi, V. Polymers: Chemistry and Physics of Modern Materials, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Gupta, P.; Elkins, C.; Long, T.E.; Wilkes, G.L. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005, 46, 4799–4810. [Google Scholar] [CrossRef]
- Tarus, B.; Fadel, N.; Al-Oufy, A.; El-Messiry, M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alex. Eng. J. 2016, 55, 2975–2984. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, C.A.S.; Correa, D.S.; Zucolotto, V. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110334. [Google Scholar] [CrossRef]
- Perera, A.S.; Zhang, S.; Homer-Vanniasinkam, S.; Coppens, M.O.; Edirisinghe, M. Polymer-Magnetic Composite Fibers for Remote-Controlled Drug Release. ACS Appl. Mater. Interfaces 2018, 10, 15524–15531. [Google Scholar] [CrossRef]
- Puiggali-Jou, A.; Cejudo, A.; Del Valle, L.J.; Aleman, C. Smart Drug Delivery from Electrospun Fibers through Electroresponsive Polymeric Nanoparticles. ACS Appl. Bio Mater. 2018, 1, 1594–1605. [Google Scholar] [CrossRef]
- Mei, L.-Y.; Song, P.; Liu, Y.-Q. Magnetic-field-assisted electrospinning highly aligned composite nanofibers containing well-aligned multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2015, 132, 41995. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Wang, X.; Wu, Y.; Yang, S.; Zhu, M.; Ramakrishna, S. Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. J. Mater. Chem. A 2017, 5, 21114–21121. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, B.K.; Kim, J.I.; Won Ko, S.; Park, C.H.; Kim, C.S. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 2018, 136, 430–443. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, L.; Zhang, Y.; Yuan, W.; Pan, H.; Wu, H. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Compos. Part A: Appl. Sci. Manuf. 2018, 104, 68–80. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Guan, Y.; Yan, H.; Jin, R.; Zhang, H.; Li, D.; Zhong, J.; Li, L. An efficient polymer for producing electrospun transparent conducting films through simple procedures and a mild post-process. RSC Adv. 2017, 7, 46621–46628. [Google Scholar] [CrossRef] [Green Version]
- Augustine, R.; Nethi, S.K.; Kalarikkal, N.; Thomas, S.; Patra, C.R. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J. Mater. Chem. B 2017, 5, 4660–4672. [Google Scholar] [CrossRef]
- Ramos, P.G.; Flores, E.; Luyo, C.; Sánchez, L.A.; Rodriguez, J. Fabrication of ZnO-RGO nanorods by electrospinning assisted hydrothermal method with enhanced photocatalytic activity. Mater. Today Commun. 2019, 19, 407–412. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Liu, W.; Fu, R.; Tu, S.; Zhao, Y.; Dong, L.; Yan, B.; Gu, Y. High Performance Piezoelectric Nanogenerators Based on Electrospun ZnO Nanorods/Poly(vinylidene fluoride) Composite Membranes. J. Phys. Chem. C 2019, 123, 11378–11387. [Google Scholar] [CrossRef]
- Babooram, K. Brief overview of polymer science. In Polymer Science and Nanotechnology; Elsevier: Cambridge, MA, USA, 2020; pp. 3–12. [Google Scholar]
- Gladysz, G.M.; Chawla, K.K. Intrinsic Voids in Polymers. In Voids in Materials; Elsevier: Cambridge, MA, USA, 2015; pp. 37–48. [Google Scholar]
- Lewis, P.R. Introduction. In Forensic Polymer Engineering; Elsevier: Cambridge, MA, USA, 2016; pp. 1–31. [Google Scholar]
- Heikkilä, P.; Taipale, A.; Lehtimäki, M.; Harlin, A. Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 2008, 48, 1168–1176. [Google Scholar] [CrossRef]
- Shrivastava, A. Polymerization. In Introduction to Plastics Engineering; William Andrew Publishing: Cambridge, MA, USA, 2018; pp. 17–48. [Google Scholar]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl. 2009, 29, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232–238. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Jose, R.; Archana, P.S.; Nair, A.S.; Balamurugan, R.; Venugopal, J.; Teo, W.E. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J. Mater. Sci. 2010, 45, 6283–6312. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, K.H.; Khil, M.S.; Ho, Y.S.; Kim, H.Y. The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fibers Polym. 2004, 5, 122–127. [Google Scholar] [CrossRef]
- Xie, J.; MacEwan, M.R.; Liu, W.; Jesuraj, N.; Li, X.; Hunter, D.; Xia, Y. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces 2014, 6, 9472–9480. [Google Scholar] [CrossRef] [PubMed]
- Berson, S.; De Bettignies, R.; Bailly, S.; Guillerez, S. Poly(3-hexylthiophene) Fibers for Photovoltaic Applications. Adv. Funct. Mater. 2007, 17, 1377–1384. [Google Scholar] [CrossRef]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Huang, F.; Wei, Q.; Wang, J.; Cai, Y.; Huang, Y. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. e-Polymers 2008, 8, 152. [Google Scholar] [CrossRef]
- Yang, G.Z.; Li, H.P.; Yang, J.H.; Wan, J.; Yu, D.G. Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers. Nanoscale Res. Lett. 2017, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chien, H.-S.; Hsu, C.-H.; Wang, Y.-C.; Wang, C.-T.; Lu, H.-A. Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules 2007, 40, 7973–7983. [Google Scholar] [CrossRef]
- Yan, G.; Niu, H.; Zhao, X.; Shao, H.; Wang, H.; Zhou, H.; Lin, T. Improving Nanofiber Production and Application Performance by Electrospinning at Elevated Temperatures. Ind. Eng. Chem. Res. 2017, 56, 12337–12343. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Pelipenko, J.; Kristl, J.; Janković, B.; Baumgartner, S.; Kocbek, P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int. J. Pharm. 2013, 456, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.D.; Lam, C.N.; Wang, Y.; He, Y.; Sánchez-Díaz, L.E.; Do, C.; Chen, W.-R. Influence of side chain isomerism on the rigidity of poly(3-alkylthiophenes) in solutions revealed by neutron scattering. Phys. Chem. Chem. Phys. 2019, 21, 7745–7749. [Google Scholar] [CrossRef] [PubMed]
- Boubée de Gramont, F.; Zhang, S.; Tomasello, G.; Kumar, P.; Sarkissian, A.; Cicoira, F. Highly stretchable electrospun conducting polymer nanofibers. Appl. Phys. Lett. 2017, 111, 093701. [Google Scholar] [CrossRef]
- Abd Razak, S.I.; Wahab, I.F.; Fadil, F.; Dahli, F.N.; Md Khudzari, A.Z.; Adeli, H. A Review of Electrospun Conductive Polyaniline Based Nanofiber Composites and Blends: Processing Features, Applications, and Future Directions. Adv. Mater. Sci. Eng. 2015, 2015, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chronakis, I.S. Nanostructured Conductive Polymers by Electrospinning. In Nanostructured Conductive Polymers; Eftekhari, A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2010; pp. 161–207. [Google Scholar]
- Santibenchakul, S.; Chaiyasith, S.; Pecharapa, W. Fabrication and Characterization of Conducting PANI Nanofibers via Electrospinning. Adv. Mater. Res. 2015, 1103, 45–51. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Jones, W.E.; Norris, I.D.; Gao, J.; Johnson, A.T.; Pinto, N.J.; Hone, J.; Han, B.; Ko, F.K.; Okuzaki, H.; et al. Electrostatically-generated nanofibers of electronic polymers. Synth. Met. 2001, 119, 27–30. [Google Scholar] [CrossRef]
- González, R.; Pinto, N.J. Electrospun poly(3-hexylthiophene-2,5-diyl) fiber field effect transistor. Synth. Met. 2005, 151, 275–278. [Google Scholar] [CrossRef]
- Chronakis, I.S.; Grapenson, S.; Jakob, A. Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer 2006, 47, 1597–1603. [Google Scholar] [CrossRef]
- Yan, T.; Shi, Y.; Cao, S.; Zhuang, H.; Lin, Y.; Zhu, L.; Lu, D. Polyaniline Electrospun Composite Nanofibers Reinforced with Carbon Nanotubes. Autex Res. J. 2022. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Chen, M.-C.; Sun, Y.-C.; Chen, Y.-H. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater. 2013, 9, 5562–5572. [Google Scholar] [CrossRef]
- Guo, B.; Ma, P.X. Conducting Polymers for Tissue Engineering. Biomacromolecules 2018, 19, 1764–1782. [Google Scholar] [CrossRef]
- Zhang, Y.; Rutledge, G.C. Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats. Macromolecules 2012, 45, 4238–4246. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Fridrikh, S.V.; Rutledge, G.C. Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning. Adv. Mater. 2004, 16, 1562–1566. [Google Scholar] [CrossRef]
- Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 2018, 30, e1704765. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.-Z.; Shi, M.-M.; Deng, M.; Wang, M.; Chen, H.-Z. Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning. Mater. Sci. Eng. B 2008, 150, 70–76. [Google Scholar] [CrossRef]
- Laforgue, A.; Robitaille, L. Production of Conductive PEDOT Nanofibers by the Combination of Electrospinning and Vapor-Phase Polymerization. Macromolecules 2010, 43, 4194–4200. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; MacEwan, M.R.; Willerth, S.M.; Li, X.; Moran, D.W.; Sakiyama-Elbert, S.E.; Xia, Y. Conductive Core–Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Adv. Funct. Mater. 2009, 19, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
- Biermaier, C.; Bechtold, T.; Pham, T. Towards the Functional Ageing of Electrically Conductive and Sensing Textiles: A Review. Sensors 2021, 21, 5944. [Google Scholar] [CrossRef]
- Norris, I.D.; Shaker, M.M.; Ko, F.K.; MacDiarmid, A.G. Electrostatic fabrication of ultrafine conducting fibers: Polyaniline/polyethylene oxide blends. Synth. Met. 2000, 114, 109–114. [Google Scholar] [CrossRef]
- Kang, T.S.; Lee, S.W.; Joo, J.; Lee, J.Y. Electrically conducting polypyrrole fibers spun by electrospinning. Synth. Met. 2005, 153, 61–64. [Google Scholar] [CrossRef]
- Liu, H.; Reccius, C.H.; Craighead, H.G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 2005, 87, 253106. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Chen, L.; Chen, Y.; Wei, Y. A novel approach to electrospinning of pristine and aligned MEH-PPV using binary solvents. J. Mater. Chem. 2012, 22, 5523–5530. [Google Scholar] [CrossRef]
- Collison, C.J.; Rothberg, L.J.; Treemaneekarn, V.; Li, Y. Conformational Effects on the Photophysics of Conjugated Polymers: A Two Species Model for MEH−PPV Spectroscopy and Dynamics. Macromolecules 2001, 34, 2346–2352. [Google Scholar] [CrossRef]
- Nguyen, T.-Q.; Martini, I.B.; Liu, J.; Schwartz, B.J. Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton−Exciton Annihilation and Aggregation in MEH−PPV Films. J. Phys. Chem. B 2000, 104, 237–255. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, S.L.; Bates, W.D.; Wnek, G. Correlations between electrospinnability and physical gelation. Polymer 2005, 46, 8990–9004. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019, 84, 1453–1497. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Su, C.Y.; Hsu, C.H.; Zhang, Y.H.; Zhang, Q.C.; Chang, C.L.; Hua, C.C.; Chen, W.C. Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers. Polymers 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Moon, G.D.; Jeong, U. Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. J. Mater. Chem. 2009, 19, 743–748. [Google Scholar] [CrossRef]
- Nagata, S.; Atkinson, G.M.; Pestov, D.; Tepper, G.C.; McLeskey, J.T. Electrospun Polymer-Fiber Solar Cell. Adv. Mater. Sci. Eng. 2013, 2013, 975947. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Wu, H.-C.; Chiu, Y.-C.; Lin, C.-J.; Tung, S.-H.; Chen, W.-C. Electrospun Poly(3-hexylthiophene) Nanofibers with Highly Extended and Oriented Chains Through Secondary Electric Field for High-Performance Field-Effect Transistors. Adv. Electron. Mater. 2015, 1, 1400028. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, Y.; Liu, Y.; Wang, L.; Wang, J. Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor. J. Mater. Sci. 2020, 55, 16033–16047. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Chiu, Y.-C.; Shih, C.-C.; Wu, W.-C.; Chen, W.-C. Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. J. Mater. Chem. A 2015, 3, 15039–15048. [Google Scholar] [CrossRef]
- Zhao, W.; Yalcin, B.; Cakmak, M. Dynamic assembly of electrically conductive PEDOT:PSS nanofibers in electrospinning process studied by high speed video. Synth. Met. 2015, 203, 107–116. [Google Scholar] [CrossRef]
- Jin, G.; Li, J.; Li, K. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Massoumi, B.; Hatamzadeh, M.; Firouzi, N.; Jaymand, M. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(epsilon-caprolactone) for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 300–310. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T.; Smok, W.; Gołombek, K.; Schab-Balcerzak, E. Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Appl. Surf. Sci. 2020, 509, 145068. [Google Scholar] [CrossRef]
- Sengupta, P.; Ghosh, A.; Bose, N.; Mukherjee, S.; Roy Chowdhury, A.; Datta, P. A comparative assessment of poly(vinylidene fluoride)/conducting polymer electrospun nanofiber membranes for biomedical applications. J. Appl. Polym. Sci. 2020, 137, 49115. [Google Scholar] [CrossRef]
- Hsiao, C.W.; Bai, M.Y.; Chang, Y.; Chung, M.F.; Lee, T.Y.; Wu, C.T.; Maiti, B.; Liao, Z.X.; Li, R.K.; Sung, H.W. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 2013, 34, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Gao, H.; Zhu, G.; Cao, X.; Shi, X.; Wang, Y. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications. Biofabrication 2016, 8, 035009. [Google Scholar] [CrossRef]
- Yang, Z.; Moffa, M.; Liu, Y.; Li, H.; Persano, L.; Camposeo, A.; Saija, R.; Iati, M.A.; Marago, O.M.; Pisignano, D.; et al. Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. J. Phys. Chem. C Nanomater. Interfaces 2018, 122, 3058–3067. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Martínez, J.; España-Sánchez, B.L.; Esparza, R.; Ávila-Niño, J.A. Flexible and transparent supercapacitors using electrospun PEDOT:PSS electrodes. Synth. Met. 2020, 267, 116436. [Google Scholar] [CrossRef]
- Simotwo, S.K.; DelRe, C.; Kalra, V. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline–Carbon Nanotube Nanofibers. ACS Appl. Mater. Interfaces 2016, 8, 21261–21269. [Google Scholar] [CrossRef]
- Chen, T.-L.; Elabd, Y.A. Hybrid-Capacitors with Polyaniline/Carbon Electrodes Fabricated via Simultaneous Electrospinning/Electrospraying. Electrochim. Acta 2017, 229, 65–72. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Yang, S.; Peng, S.; Xu, Z.; Shao, W.; Pan, D.; Ramakrishna, S.; Zhu, M. Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochim. Acta 2017, 247, 400–409. [Google Scholar] [CrossRef]
- Serrano, W.; Meléndez, A.; Ramos, I.; Pinto, N.J. Poly(lactic acid)/poly(3-hexylthiophene) composite nanofiber fabrication for electronic applications. Polym. Int. 2016, 65, 503–507. [Google Scholar] [CrossRef]
- Low, K.; Horner, C.B.; Li, C.; Ico, G.; Bosze, W.; Myung, N.V.; Nam, J. Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers. Sens. Actuators B: Chem. 2015, 207, 235–242. [Google Scholar] [CrossRef]
- Sharma, H.J.; Jamkar, D.V.; Kondawar, S.B. Electrospun Nanofibers of Conducting Polyaniline/Al-SnO2 Composites for Hydrogen Sensing Applications. Procedia Mater. Sci. 2015, 10, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Li, Y.; Tao, F.; Cui, Y.; Song, W.; Li, T. A novel double-layer electrospun nanofibrous membrane sensor for detecting nitroaromatic compounds. J. Mater. Sci. 2016, 51, 10350–10360. [Google Scholar] [CrossRef]
- Choi, J.; Park, D.W.; Shim, S.E. Electrospun PEDOT:PSS/carbon nanotubes/PVP nanofibers as chemiresistors for aromatic volatile organic compounds. Synth. Met. 2012, 162, 1513–1518. [Google Scholar] [CrossRef]
- Vu, D.L.; Lin, T.F.; Lin, T.H.; Wu, M.C. Highly-Sensitive Detection of Volatile Organic Compound Vapors by Electrospun PANI/P3TI/PMMA Fibers. Polymers 2020, 12, 455. [Google Scholar] [CrossRef] [Green Version]
- Terra, I.A.A.; Sanfelice, R.C.; Valente, G.T.; Correa, D.S. Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. J. Appl. Polym. Sci. 2018, 135, 46128. [Google Scholar] [CrossRef]
- Inderan, V.; Arafat, M.M.; Haseeb, A.; Sudesh, K.; Lee, H.L. Electrospun (Nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing. Nanotechnology 2020, 31, 425503. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miao, K.; Chen, Y.; Fan, L.-J. Preparation of Fluorescent Conjugated Polymer Fibrous Membranes for Rapid Recognition of Aromatic Solvents. ACS Appl. Mater. Interfaces 2015, 7, 7759–7766. [Google Scholar] [CrossRef]
- Aussawasathien, D.; Dong, J.H.; Dai, L. Electrospun polymer nanofiber sensors. Synth. Met. 2005, 154, 37–40. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Ying, B.; Yang, M. Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens. Actuators B: Chem. 2009, 141, 390–395. [Google Scholar] [CrossRef]
- Nohut MaŞLakci, N. Electrospun Polyacrylonitrile/Polythiophene Fibers for Phosphate Anion Sensing. Bilge Int. J. Sci. Technol. Res. 2020, 4, 6–12. [Google Scholar] [CrossRef]
- Si, Y.; Wang, X.; Li, Y.; Chen, K.; Wang, J.; Yu, J.; Wang, H.; Ding, B. Optimized colorimetric sensor strip for mercury(ii) assay using hierarchical nanostructured conjugated polymers. J. Mater. Chem. A 2014, 2, 645–652. [Google Scholar] [CrossRef]
- Wu, M.; Sun, L.; Miao, K.; Wu, Y.; Fan, L.-J. Detection of Sudan Dyes Based on Inner-Filter Effect with Reusable Conjugated Polymer Fibrous Membranes. ACS Appl. Mater. Interfaces 2018, 10, 8287–8295. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-S.; Jang, D.-H.; Lee, Y.-I.; Jung, C.W.; Lim, D.w.; Kim, B.S.; Jeong, Y.-k.; Myung, N.V.; Choa, Y.-H. Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. Res. Chem. Intermed. 2014, 40, 2565–2570. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, P.; Sharma, J.G.; Sharma, A.; Malhotra, B.D. PEDOT:PSS/PVA-Nanofibers-Decorated Conducting Paper for Cancer Diagnostics. Adv. Mater. Technol. 2016, 1, 1600056. [Google Scholar] [CrossRef]
- Verpoorten, E.; Massaglia, G.; Ciardelli, G.; Pirri, C.F.; Quaglio, M. Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials 2020, 10, 2166. [Google Scholar] [CrossRef]
- Massaglia, G.; Chiodoni, A.; Marasso, S.L.; Pirri, C.F.; Quaglio, M. Electrical Conductivity Modulation of Crosslinked Composite Nanofibers Based on PEO and PEDOT:PSS. J. Nanomater. 2018, 2018, 3286901. [Google Scholar] [CrossRef]
- Shakiba, M.; Nabavi, S.R.; Emadi, H.; Faraji, M. Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite. Polym. Adv. Technol. 2020, 32, 1301–1316. [Google Scholar] [CrossRef]
- Yen, S.C.; Liu, Z.W.; Juang, R.S.; Sahoo, S.; Huang, C.H.; Chen, P.; Hsiao, Y.S.; Fang, J.T. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Appl. Mater. Interfaces 2019, 11, 43843–43856. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Das, S.; Dasgupta, S.; Sengupta, P.; Datta, P. Flexible Nanogenerator from Electrospun PVDF-Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications. ACS Biomater. Sci. Eng. 2021, 7, 1673–1685. [Google Scholar] [CrossRef]
- Jin, S.; Sun, T.; Fan, Y.; Wang, L.; Zhu, M.; Yang, J.; Jiang, W. Synthesis of freestanding PEDOT:PSS/PVA@Ag NPs nanofiber film for high-performance flexible thermoelectric generator. Polymer 2019, 167, 102–108. [Google Scholar] [CrossRef]
- Huang, S.-R.; Lin, K.-F.; Don, T.-M.; Lee, C.-F.; Wang, M.-S.; Chiu, W.-Y. Thermoresponsive conductive polymer composite thin film and fiber mat: Crosslinked PEDOT:PSS and P(NIPAAm-co-NMA) composite. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 1078–1087. [Google Scholar] [CrossRef]
- Meng, N.; Wang, X.; Xin, B.; Chen, Z.; Liu, Y. Preparation, structure and electrochromic behavior of PANI/PVA composite electrospun nanofiber. Text. Res. J. 2018, 89, 2490–2499. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Huang, S.Y.; Wan, H.-Y.; Chen, Y.-T.; Yu, S.-K.; Wu, H.-C.; Yang, T.-I. Electrospun Hydrophobic Polyaniline/Silk Fibroin Electrochromic Nanofibers with Low Electrical Resistance. Polymers 2020, 12, 2102. [Google Scholar] [CrossRef] [PubMed]
- Dulgerbaki, C.; Maslakci, N.N.; Komur, A.I.; Oksuz, A.U. Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials. Eur. Polym. J. 2018, 107, 173–180. [Google Scholar] [CrossRef]
- Hsieh, H.-C.; Chen, J.-Y.; Lee, W.-Y.; Bera, D.; Chen, W.-C. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement. Macromol. Rapid Commun. 2018, 39, 1700616. [Google Scholar] [CrossRef]
- Zha, F.; Chen, W.; Lv, G.; Wu, C.; Hao, L.; Meng, L.; Zhang, L.; Yu, D. Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111795. [Google Scholar] [CrossRef] [PubMed]
- Islam, G.M.N.; Ali, A.; Collie, S. Textile sensors for wearable applications: A comprehensive review. Cellulose 2020, 27, 6103–6131. [Google Scholar] [CrossRef]
- Fallahi, A.; Mandla, S.; Kerr-Phillip, T.; Seo, J.; Rodrigues, R.O.; Jodat, Y.A.; Samanipour, R.; Hussain, M.A.; Lee, C.K.; Bae, H.; et al. Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications. ChemNanoMat 2019, 5, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Zha, F.; Chen, W.; Hao, L.; Wu, C.; Lu, M.; Zhang, L.; Yu, D. Electrospun cellulose-based conductive polymer nanofibrous mats: Composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter. 2020, 16, 6591–6598. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, W.; Wang, W.; Fong, H.; Zhu, Z. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications. ACS Appl. Mater. Interfaces 2017, 9, 30014–30023. [Google Scholar] [CrossRef]
- Trung, T.Q.; Lee, N.-E. Materials and devices for transparent stretchable electronics. J. Mater. Chem. C 2017, 5, 2202–2222. [Google Scholar] [CrossRef]
- Park, H.; Lee, S.J.; Kim, S.; Ryu, H.W.; Lee, S.H.; Choi, H.H.; Cheong, I.W.; Kim, J.-H. Conducting polymer nanofiber mats via combination of electrospinning and oxidative polymerization. Polymer 2013, 54, 4155–4160. [Google Scholar] [CrossRef]
- Zarrin, N.; Tavanai, H.; Abdolmaleki, A.; Bazarganipour, M.; Alihosseini, F. An investigation on the fabrication of conductive polyethylene dioxythiophene (PEDOT) nanofibers through electrospinning. Synth. Met. 2018, 244, 143–149. [Google Scholar] [CrossRef]
- Laforgue, A.; Simon, P.; Fauvarque, J.F.; Sarrau, J.F.; Lailler, P. Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers. J. Electrochem. Soc. 2001, 148, A1130. [Google Scholar] [CrossRef]
- Maharjan, B.; Kaliannagounder, V.K.; Jang, S.R.; Awasthi, G.P.; Bhattarai, D.P.; Choukrani, G.; Park, C.H.; Kim, C.S. In-situ polymerized polypyrrole nanoparticles immobilized poly(epsilon-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111056. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, D.P.; Tiwari, A.P.; Maharjan, B.; Tumurbaatar, B.; Park, C.H.; Kim, C.S. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy. J. Colloid Interface Sci. 2019, 534, 447–458. [Google Scholar] [CrossRef]
- Hamzah, M.S.A.; Austad, A.; Razak, S.I.A.; Nayan, N.H.M. Tensile and wettability properties of electrospun polycaprolactone coated with pectin/polyaniline composite for drug delivery application. Int. J. Struct. Integr. 2019, 10, 704–713. [Google Scholar] [CrossRef]
- Tang, X.; Saveh-Shemshaki, N.; Kan, H.M.; Khan, Y.; Laurencin, C.T. Biomimetic electroconductive nanofibrous matrices for skeletal muscle regenerative engineering. Regen. Eng. Transl. Med. 2020, 6, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Rajzer, I.; Rom, M.; Menaszek, E.; Pasierb, P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater. Lett. 2015, 138, 60–63. [Google Scholar] [CrossRef]
- Jing, W.; Ao, Q.; Wang, L.; Huang, Z.; Cai, Q.; Chen, G.; Yang, X.; Zhong, W. Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration. Chem. Eng. J. 2018, 345, 566–577. [Google Scholar] [CrossRef]
- Shim, H.-S.; Na, S.-I.; Nam, S.H.; Ahn, H.-J.; Kim, H.J.; Kim, D.-Y.; Kim, W.B. Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer. Appl. Phys. Lett. 2008, 92, 183107. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Zubair, N.A.; Azman, N.H.N.; Sulaiman, Y. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Mater. Chem. Phys. 2017, 192, 161–169. [Google Scholar] [CrossRef]
- Zhang, H.-D.; Tang, C.-C.; Long, Y.-Z.; Zhang, J.-C.; Huang, R.; Li, J.-J.; Gu, C.-Z. High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens. Actuators A: Phys. 2014, 219, 123–127. [Google Scholar] [CrossRef]
- Jo, S.; Kim, J.; Noh, J.; Kim, D.; Jang, G.; Lee, N.; Lee, E.; Lee, T.S. Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant. ACS Appl. Mater. Interfaces 2014, 6, 22884–22893. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, P.; Manesh, K.M.; Lee, S.H.; Uthayakumar, S.; Gopalan, A.I.; Lee, K.P. Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)-polyaniline core-shell electrospun composite electrode. Analyst 2011, 136, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kampstra, K.L.; Abidian, M.R. High performance conducting polymer nanofiber biosensors for detection of biomolecules. Adv. Mater. 2014, 26, 4954–4960. [Google Scholar] [CrossRef] [Green Version]
- Sapountzi, E.; Chateaux, J.-F.; Lagarde, F. Combining Electrospinning and Vapor-Phase Polymerization for the Production of Polyacrylonitrile/ Polypyrrole Core-Shell Nanofibers and Glucose Biosensor Application. Front. Chem. 2020, 8, 678. [Google Scholar] [CrossRef]
- Demirci Uzun, S.; Kayaci, F.; Uyar, T.; Timur, S.; Toppare, L. Bioactive Surface Design Based on Functional Composite Electrospun Nanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Appl. Mater. Interfaces 2014, 6, 5235–5243. [Google Scholar] [CrossRef] [Green Version]
- Kerr-Phillips, T.E.; Aydemir, N.; Chan, E.W.C.; Barker, D.; Malmström, J.; Plesse, C.; Travas-Sejdic, J. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens. Bioelectron. 2018, 100, 549–555. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Chen, L.; Guo, M.; Wu, Y.; Wei, Y.; Wang, J.; Wang, X. Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH3 Sensor at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 55056–55063. [Google Scholar] [CrossRef]
- Yu, G.-F.; Yan, X.; Yu, M.; Jia, M.-Y.; Pan, W.; He, X.-X.; Han, W.-P.; Zhang, Z.-M.; Yu, L.-M.; Long, Y.-Z. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale 2016, 8, 2944–2950. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, B.; Xu, L.; Qiao, Y.; Wang, F.; Xia, Q.; Lu, Z. A Sandwich-Structured Piezoresistive Sensor with Electrospun Nanofiber Mats as Supporting, Sensing, and Packaging Layers. Polymers 2018, 10, 575. [Google Scholar] [CrossRef] [Green Version]
- Kweon, O.Y.; Lee, S.J.; Oh, J.H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018, 10, 540–551. [Google Scholar] [CrossRef]
- Nan, N.; He, J.; You, X.; Sun, X.; Zhou, Y.; Qi, K.; Shao, W.; Liu, F.; Chu, Y.; Ding, B. A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics. Adv. Mater. Technol. 2019, 4, 1800338. [Google Scholar] [CrossRef]
- Capilli, G.; Sartori, D.R.; Gonzalez, M.C.; Laurenti, E.; Minero, C.; Calza, P. Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@polypyrrole nanofibers as photocatalysts for water decontamination. RSC Adv. 2021, 11, 9911–9920. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; McCarthy, D.L.; Tong, L.; Cowan, M.J.; Kinsley, J.M.; Sonnenberg, L.; Skorenko, K.H.; Boyer, S.M.; DeCoste, J.B.; Bernier, W.E.; et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) infused TiO2 nanofibers: The role of hole transport layer in photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant. RSC Adv. 2016, 6, 113884–113892. [Google Scholar] [CrossRef]
- Alcaraz-Espinoza, J.J.; Chávez-Guajardo, A.E.; Medina-Llamas, J.C.; Andrade, C.A.S.; de Melo, C.P. Hierarchical Composite Polyaniline–(Electrospun Polystyrene) Fibers Applied to Heavy Metal Remediation. ACS Appl. Mater. Interfaces 2015, 7, 7231–7240. [Google Scholar] [CrossRef]
- Farahani, A.; Sereshti, H. An integrated microfluidic device for solid-phase extraction and spectrophotometric detection of opium alkaloids in urine samples. Anal. Bioanal. Chem. 2020, 412, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Esfandiarnejad, R.; Sereshti, H.; Farahani, A. Polyaniline immobilized on polycaprolactam nanofibers as a sorbent in electrochemically controlled solid-phase microextraction coupled with HPLC for the determination of angiotensin II receptor antagonists in human blood plasma. Anal. Bioanal. Chem. 2019, 411, 3631–3640. [Google Scholar] [CrossRef]
- Niu, Z.; Yuan, W. Smart Nanocomposite Nonwoven Wearable Fabrics Embedding Phase Change Materials for Highly Efficient Energy Conversion–Storage and Use as a Stretchable Conductor. ACS Appl. Mater. Interfaces 2021, 13, 4508–4518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xia, Y.; Wang, L.; Liu, L.; Liu, Y.; Leng, J. Conductive Shape Memory Microfiber Membranes with Core-Shell Structures and Electroactive Performance. ACS Appl. Mater. Interfaces 2018, 10, 35526–35532. [Google Scholar] [CrossRef]
- Karim, M.R.; Al-Ahmari, A.; Dar, M.A.; Aijaz, M.O.; Mollah, M.L.; Ajayan, P.M.; Yeum, J.H.; Kim, K.-S. Conducting and Biopolymer Based Electrospun Nanofiber Membranes for Wound Healing Applications. Curr. Nanosci. 2016, 12, 220–227. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Bhattarai, D.P.; Maharjan, B.; Ko, S.W.; Kim, H.Y.; Park, C.H.; Kim, C.S. Polydopamine-based Implantable Multifunctional Nanocarpet for Highly Efficient Photothermal-chemo Therapy. Sci. Rep. 2019, 9, 2943. [Google Scholar] [CrossRef] [PubMed]
- Kisslinger, R.; Hua, W.; Shankar, K. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II⁻VI and IV⁻VI Inorganic Semiconductor Quantum Dots. Polymers 2017, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotia, A.; Malara, A.; Paone, E.; Bonaccorsi, L.; Frontera, P.; Serrano, G.; Caneschi, A. Self Standing Mats of Blended Polyaniline Produced by Electrospinning. Nanomaterials 2021, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- Subramani, S.; Rajiv, S. Electrospun based polythioaniline/polyvinylalcohol/graphene oxide composite nanofibers for supercapacitor application. Ionics 2021, 27, 2203–2218. [Google Scholar] [CrossRef]
- Irvin, J.A.; Irvin, D.J.; Stenger-Smith, J.D. Electrically Active Polymers for Use in Batteries and Supercapacitors. In Handbook of Conducting Polymers, 3rd ed.; Skotheim, T., Reynolds, J.R., Eds.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Pavel, I.-A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Veeramuthu, L.; Venkatesan, M.; Benas, J.S.; Cho, C.J.; Lee, C.C.; Lieu, F.K.; Lin, J.H.; Lee, R.H.; Kuo, C.C. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers 2021, 13, 4281. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications-A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
- Torres Alonso, E.; Shin, D.W.; Rajan, G.; Neves, A.I.S.; Russo, S.; Craciun, M.F. Water-Based Solution Processing and Wafer-Scale Integration of All-Graphene Humidity Sensors. Adv. Sci. 2019, 6, 1802318. [Google Scholar] [CrossRef] [Green Version]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.A. Organic Thin-Film Capacitive and Resistive Humidity Sensors: A Focus Review. Adv. Mater. Interfaces 2018, 5, 1800969. [Google Scholar] [CrossRef]
- Collins, G.E.; Buckley, L.J. Conductive polymer-coated fabrics for chemical sensing. Synth. Met. 1996, 78, 93–101. [Google Scholar] [CrossRef]
- Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L1005–L1028. [Google Scholar] [CrossRef]
- Ji, G.; Chen, Z.; Li, H.; Awuye, D.E.; Guan, M.; Zhu, Y. Electrospinning-Based Biosensors for Health Monitoring. Biosensors 2022, 12, 876. [Google Scholar] [CrossRef]
- Maity, K.; Mandal, D. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors. ACS Appl. Mater. Interfaces 2018, 10, 18257–18269. [Google Scholar] [CrossRef]
- Li, T.; Shi, C.; Jin, F.; Yang, F.; Gu, L.; Wang, T.; Dong, W.; Feng, Z.Q. Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator. Sci. Adv. 2021, 7, eabh2350. [Google Scholar] [CrossRef] [PubMed]
- Ademola Bode-Aluko, C.; Pereao, O.; Kyaw, H.H.; Al-Naamani, L.; Al-Abri, M.Z.; Tay Zar Myint, M.; Rossouw, A.; Fatoba, O.; Petrik, L.; Dobretsov, S. Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater. Sci. Eng. B 2021, 264, 114913. [Google Scholar] [CrossRef]
- Ren, F.; Ma, H.; Hu, W.; Zhou, Z.; Xu, W. Preparation of Sn-doped CdS/TiO2/conducting polymer fiber composites for efficient photocatalytic hydrogen production under visible light irradiation. J. Appl. Polym. Sci. 2015, 132, 42300. [Google Scholar] [CrossRef]
- Patil, P.T.; Anwane, R.S.; Kondawar, S.B. Development of Electrospun Polyaniline/ZnO Composite Nanofibers for LPG Sensing. Procedia Mater. Sci. 2015, 10, 195–204. [Google Scholar] [CrossRef]
Approach | Advantages | Disadvantages |
---|---|---|
Neat electrospinning |
|
|
| ||
Coaxial electrospinning |
|
|
Co-electrospinning with carrier polymer | ||
Post-electrospinning coating |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, M.; Santiago, M.D.; Irvin, J.A. Electrospun Conducting Polymers: Approaches and Applications. Materials 2022, 15, 8820. https://doi.org/10.3390/ma15248820
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. Materials. 2022; 15(24):8820. https://doi.org/10.3390/ma15248820
Chicago/Turabian StyleAcosta, Mariana, Marvin D. Santiago, and Jennifer A. Irvin. 2022. "Electrospun Conducting Polymers: Approaches and Applications" Materials 15, no. 24: 8820. https://doi.org/10.3390/ma15248820
APA StyleAcosta, M., Santiago, M. D., & Irvin, J. A. (2022). Electrospun Conducting Polymers: Approaches and Applications. Materials, 15(24), 8820. https://doi.org/10.3390/ma15248820