Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Effect of Melt Hydrogenation on Distribution and Morphology of TiC
4.2. Effect of Melt Hydrogenation on Hot Workability of TiC/Ti64 Composites
5. Conclusions
- (1)
- Melt hydrogenation did not change the shape of the eutectic TiC phase, but the size of eutectic TiC and the primary β phase were significantly increased. As a result, many large-sized eutectic TiC were distributed along the grain boundaries of primary β grains;
- (2)
- The peak flowing stress of TiC/Ti64 composites in the (α + β) phase region was reduced by melt hydrogenation, most significantly with a strain rate of 0.01 s−1. When compressed at 900 °C/0.01 s−1, the peak stress decreased from 241 ± 9 to 190 ± 8 MPa (decreased by ~51 MPa and 21.2%), and the best improvement of hot workability was obtained;
- (3)
- The decreased atomic bonding force, reduced β/(α + β) transition temperature, higher proportion of DRX, and higher mobility of dislocations by hydrogen atoms all contributed to the enhanced hot workability of TiC/Ti64 composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Yang, F.; Chen, C.; Shao, Y.; Lu, B.; Sui, Y.; Guo, Z. Mechanical property and microstructure of in-situ TiB/Ti composites via vacuum sintering and hot rolling. J. Alloys Compd. 2022, 911, 165042. [Google Scholar] [CrossRef]
- Xiaolong, C.; Zulei, L.; Yanhua, G.; Zhonggang, S.; Yaoqi, W.; Lian, Z. A study on the grain refinement mechanism of Ti-6Al-4V alloy produced by wire arc additive manufacturing using hydrogenation treatment processes. J. Alloys Compd. 2022, 890, 161634. [Google Scholar] [CrossRef]
- An, Q.; Wang, S.; Huang, L.; Wang, C.; Qian, Q.; Jiang, Y.; Wang, L.; Geng, L. Experimental and first-principles study on TiB/TiC interface in hybrid (TiB + TiC)/Ti6Al4V composite. Ceram. Int. 2022, 48, 22554–22559. [Google Scholar] [CrossRef]
- Ya, B.; Zhou, B.; Yang, H.; Huang, B.; Jia, F.; Zhang, X. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes. J. Alloys Compd. 2015, 637, 456–460. [Google Scholar] [CrossRef]
- Han, C.; Babicheva, R.; Chua, J.D.Q.; Ramamurty, U.; Tor, S.B.; Sun, C.-N.; Zhou, K. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders. Addit. Manuf. 2020, 36, 101466. [Google Scholar] [CrossRef]
- Wei, Z.J.; Cao, L.; Wang, H.W.; Zou, C.M. Microstructure and mechanical properties of TiC/Ti-6Al-4V composites processed by in situ casting route. Mater. Sci. Tech. Ser. 2011, 27, 1321–1327. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Luo, L.; Yan, H.; Li, X.; Chen, R.; Su, Y.; Guo, J.; Fu, H. High temperature deformation behavior of melt hydrogenated (TiB + TiC)/Ti-6Al-4V composites. Mater. Des. 2017, 121, 335–344. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Luo, L.; Liu, X.; Tang, Y.; Li, X.; Chen, R.; Su, Y.; Guo, J.; Fu, H. Hot deformation behavior and dynamic recrystallization of melt hydrogenated Ti-6Al-4V alloy. J. Alloys Compd. 2017, 728, 709–718. [Google Scholar] [CrossRef]
- Zhao, J.W.; Ding, H.; Hou, H.L.; Li, Z.Q. Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy. J. Alloys Compd. 2010, 491, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, L.; Luo, L.; Xu, Y.; Li, X.; Chen, R.; Su, Y.; Guo, J.; Fu, H. Hydrogen induced softening and hardening for hot workability of (TiB + TiC)/Ti-6Al-4V composites. Int. J. Hydrogen Energy 2017, 42, 3380–3388. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Luo, L.; Liu, X.; Tang, Y.; Yan, H.; Yao, L.; Su, Y.; Guo, J.; Fu, H. Positive effect of hydrogen on interface of in situ synthesized Ti-6Al-4V matrix composites. Mater. Sci. Eng. A 2018, 711, 12–21. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Luo, L.; Wang, B.; Yan, H.; Chen, R.; Su, Y.; Guo, J.; Fu, H. Effect of melt hydrogenation on microstructure evolution and tensile properties of (TiB + TiC)/Ti-6Al-4V composites. J. Mater. Res. Tech. 2020, 9, 6343–6351. [Google Scholar] [CrossRef]
- Lin, X.; Dong, F.; Zhang, Y.; Yuan, X.; Huang, H.; Zheng, B.; Wang, L.; Wang, X.; Luo, L.; Su, Y.; et al. Hot-deformation behaviour and hot-processing map of melt-hydrogenated Ti 6Al 4V/(TiB+TiC). Int. J. Hydrogen Energy 2019, 44, 8641–8649. [Google Scholar] [CrossRef]
- Bai, M.; Namus, R.; Xu, Y.; Guan, D.; Rainforth, M.W.; Inkson, B.J. In-situ Ti-6Al-4V/TiC composites synthesized by reactive spark plasma sintering: Processing, microstructure, and dry sliding wear behaviour. Wear 2019, 432-433, 202944. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Yang, F.; Luo, L.; Yan, H.; Liu, X.; Li, X.; Chen, R.; Su, Y.; Guo, J.; et al. Hydrogen induced microstructure evolution of titanium matrix composites. Int. J. Hydrogen Energy 2018, 43, 9838–9847. [Google Scholar] [CrossRef]
- Peterson, J.; Issariyapat, A.; Umeda, J.; Kondoh, K. The effects of heat treatment and carbon content on the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V with dissolved TiC particles. J. Alloys Compd. 2022, 920, 165930. [Google Scholar] [CrossRef]
- Ochonogor, O.F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A.P.I. Effects of Ti and TiC ceramic powder on laser-cladded Ti–6Al–4V in situ intermetallic composite. Appl. Surf. Sci. 2012, 263, 591–596. [Google Scholar] [CrossRef]
- Oh, J.-M.; Roh, K.-M.; Lim, J.-W. Brief review of removal effect of hydrogen-plasma arc melting on refining of pure titanium and titanium alloys. Int. J. Hydrogen Energy 2016, 41, 23033–23041. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Han, Y.; Huang, G.; Mao, J.; Lu, W. Visual assessment of special rod-like α-Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites. Compos. Part B Eng. 2022, 230, 109511. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Vilar, R. Characterization of (TiB+TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition. J. Mater. Process Tech. 2011, 211, 597–601. [Google Scholar] [CrossRef]
- Senkov, O.N.; Froes, F.H. Thermohydrogen processing of titanium alloys. Int. J. Hydrogen Energy 1999, 24, 565–576. [Google Scholar] [CrossRef]
- Teter, D.F.; Robertson, I.M.; Birnbaum, H.K. The effects of hydrogen on the deformation and fracture of β-titanium. Acta Mater. 2001, 49, 4313–4323. [Google Scholar] [CrossRef]
- Shen, J.; Kotha, S.; Noraas, R.; Venkatesh, V.; Ghosh, S. Developing parametrically upscaled constitutive and crack nucleation models for the α/β Ti64 alloy. Int. J. Plast. 2022, 151, 103182. [Google Scholar] [CrossRef]
- Shen, J.; Sun, Y.; Ning, Y.; Yu, H.; Yao, Z.; Hu, L. Superplasticity induced by the competitive DRX between BCC beta and HCP alpha in Ti-4Al-3V-2Mo-2Fe alloy. Mater. Charact. 2019, 153, 304–317. [Google Scholar] [CrossRef]
- Arun Babu, A.K.; Mozumder, Y.H.; Saha, B.R.; Subramanya Sarma, C.V.; Mandal, A.S. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition. Mater. Sci. Eng. A 2018, 734, 269–280. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, L.; Hu, L.; Sun, Y.; Gao, F.; Liu, W.; Yu, H. Effect of subgrain and the associated DRX behaviour on the texture modification of Mg-6.63Zn-0.56Zr alloy during hot tensile deformation. Mater. Sci. Eng. A 2021, 823, 141745. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Barth, H.P.; Deutges, M.; Borchers, C.; Liu, F.; Kirchheim, R. Increase in dislocation density in cold-deformed Pd using H as a temporary alloying addition. Scr. Mater. 2013, 68, 743–746. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B. Effects of hydrogen as a solid solution element on the deformation behavior of a near-alpha titanium alloy. Mater. Sci. Eng. A 2021, 815, 141269. [Google Scholar] [CrossRef]
NO. | Hydrogen Percentagein Gas Mixture (%) | Hydrogen Content (wt.%) | β/(α + β) Transition Temperature (°C) |
---|---|---|---|
unhydrogenated | 0 | 0 | 1024 ± 9 |
hydrogenated | 20 | 0.0503 ± 0.0027 | 998 ± 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, S.; Tan, Y.; Yao, L.; Wang, L.; Su, Y.; Guo, J. Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation. Materials 2022, 15, 8884. https://doi.org/10.3390/ma15248884
Wang X, Chen S, Tan Y, Yao L, Wang L, Su Y, Guo J. Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation. Materials. 2022; 15(24):8884. https://doi.org/10.3390/ma15248884
Chicago/Turabian StyleWang, Xuan, Siyu Chen, Yingmei Tan, Longhui Yao, Liang Wang, Yanqing Su, and Jingjie Guo. 2022. "Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation" Materials 15, no. 24: 8884. https://doi.org/10.3390/ma15248884
APA StyleWang, X., Chen, S., Tan, Y., Yao, L., Wang, L., Su, Y., & Guo, J. (2022). Microstructure Evolution and Enhanced Hot Workability of TiC/Ti-6Al-4V Composites Fabricated by Melt Hydrogenation. Materials, 15(24), 8884. https://doi.org/10.3390/ma15248884