Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques
Abstract
:1. Introduction
2. Machine Learning Models
2.1. ANN Model
2.2. GP Model
2.3. M5P Tree Model
2.4. RT Model
2.5. MLR Model
- P = dependent variable;
- q1 … qn = independent variable;
- q2 = Regression Coefficient.
3. Methodology
3.1. Aggregates
3.2. Bitumen
3.3. Glass and Carbon Fibers
4. Experimental Investigation
Collection of Dataset
5. Performance Evaluating Parameters
6. Results and Discussion
6.1. ANN Model Performance Assessment
6.2. GP Model Performance Assessment
6.3. M5P Model Performance Assessment
6.4. RT Model Performance Assessment
6.5. MLR Model Performance Assessment
7. Comparison of Machine Learning Models
8. Feature Importance
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
25GF:75CF | 25% Glass fiber and 75% Carbon fiber |
50GF:50CF | 50% Glass fiber and 50% Carbon fiber |
75GF:25CF | 75% Glass fiber and 25% Carbon fiber |
AC | Asphalt Concrete |
AI | Artificial Intelligence |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
ANN | Artificial neural networks |
ASTM | American Society for Testing and Materials |
BC | Bitumen Content |
CA | Coarse Aggregate |
CC | Coefficient of correlation |
CF | Carbon Fiber |
CFRAC | Carbon Fiber-Reinforced Asphalt Concrete |
EI | Elongation Index |
FA | Fine Aggregate |
FD | Fiber Diameter |
FI | Flakiness Index |
FL | Fiber Length |
GF | Glass Fiber |
GFRAC | Glass Fiber-Reinforced Asphalt Concrete |
GFRP | Glass Fiber-Reinforced Polymer |
GP | Gaussian Process |
HPPWD | Himachal Pradesh Public Works Department |
IQR | Interquartile Range |
LAV | Los Angeles Abrasion Value |
MAE | Mean absolute error |
ML | Machine Learning |
MLFNN | Multilayer Feedforward Neural Network |
MS | Marshall Stability |
O | Omega |
PAN | Polyacrylonitrile |
PG | Penetration Grade |
PP | Polypropylene |
PUK | Pearson Kernel Function |
RAE | Relative Absolute Error |
RMSE | Root Mean Squared Error |
RRSE | Root Relative Squared Error |
S | Sigma |
SDR | Standard Deviation Reduction |
SG | Specific Gravity |
SVM | Support Vector Machine |
VG | Viscosity grade |
References
- Dizaj, A.B.; Ziari, H.; Nejhad, M.A. Effects of Carbon Fiber Geogrid Reinforcement on Propagation of Cracking in Pavement and Augmentation of Flexible Pavement Life. Adv. Mater. Res. 2014, 891, 1533–1538. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and mechanical properties of fiber reinforced asphalt mixtures. Constr. Build. Mater. 2020, 240, 117932. [Google Scholar] [CrossRef]
- Zheng, D.; Song, W.; Fu, J.; Xue, G.; Li, J.; Cao, S. Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression. Constr. Build. Mater. 2020, 258, 120351. [Google Scholar] [CrossRef]
- Mawat, H.Q.; Ismael, M.Q. Assessment of moisture susceptibility for asphalt mixtures modified by carbon fibers. Civ. Eng. J. 2020, 6, 304–317. [Google Scholar] [CrossRef]
- Ameri, M.; Nemati, M.; Shaker, H. Experimental and numerical investigation of the properties of the Hot Mix Asphalt Concrete with basalt and glass fiber. Frat. Ed Integrità Strutt. 2019, 13, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Jeffry SN, A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Satar MK, I.M. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash. Constr. Build. Mater. 2018, 173, 40–48. [Google Scholar] [CrossRef]
- Tanzadeh, R.; Tanzadeh, J.; Tahami, S.A. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Constr. Build. Mater. 2019, 212, 467–475. [Google Scholar] [CrossRef]
- Saleem, A.A.; Ismael, M.Q. Assessment Resistance Potential to Moisture Damage and Rutting for HMA Mixtures Reinforced by Steel Fibers. Civ. Eng. J. 2020, 6, 1726–1738. [Google Scholar] [CrossRef]
- Bhanu, V.U.; Kumar, N.P. Influence of glass fibers in stone mastic asphalt. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1025, 012020. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Zhang, L. Development and performance evaluation of epoxy asphalt concrete modified with glass fiber. Road Mater. Pavement Des. 2019, 20, 715–726. [Google Scholar] [CrossRef]
- Zarei, A.; Zarei, M.; Janmohammadi, O. Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures. Arab. J. Sci. Eng. 2019, 44, 4085–4094. [Google Scholar] [CrossRef]
- Ohm, B.S.; Yoo, P.J.; Ham, S.M.; Suh, Y.C. A Study on Field Application of Glass Fiber-reinforced Asphalt Mixtures. Int. J. Highw. Eng. 2016, 18, 67–74. [Google Scholar] [CrossRef]
- Hamid, B.; Hossein, H.G.; Vahid NM, G.; Mohammad, N. Improving the moisture performance of hot mix glass asphalt by high-density polyethylene as an asphalt binder modifier. Int. J. Sustain. Build. Technol. Urban Dev. 2019, 31, 184–193. [Google Scholar] [CrossRef]
- Dong, L.; Khater, A.; Yue, Y.; Abdelsalam, M.; Zhang, Z.; Li, Y.; Li, J.; Iseley, D.T. The performance of asphalt mixtures modified with lignin fiber and glass fiber. A review. Constr. Build. Mater. 2019, 209, 377–387. [Google Scholar] [CrossRef]
- Upadhya, A.; Thakur, M.S.; Pandhiani, S.M.; Tayal, S. Estimation of Marshall Stability of Asphalt Concrete Mix Using Neural Network and M5P Tree. In Computational Technologies in Materials Science; CRC Press: Boca Raton, FL, USA, 2021; pp. 223–236. [Google Scholar]
- Sharma, N.; Thakur, M.S.; Sihag, P.; Malik, M.A.; Kumar, R.; Abbas, M.; Saleel, C.A. Machine Learning Techniques for Evaluating Concrete Strength with Waste Marble Powder. Materials 2022, 15, 5811. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, X.; Yu, Y.; Xie, T.; Yang, G.; Xue, J. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Constr. Build. Mater. 2019, 211, 479–491. [Google Scholar] [CrossRef]
- Ozgan, E. Artificial neural network based modelling of the Marshall Stability of asphalt concrete. Expert Syst. Appl. 2011, 38, 6025–6030. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Heidaripanah, A. Effect of asphalt content on the marshall stability of asphalt concrete using artificial neural networks. Sci. Iran. 2009, 16, 98–105. [Google Scholar]
- Behnood, A.; Daneshvar, D. A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm. Constr. Build. Mater. 2020, 262, 120544. [Google Scholar] [CrossRef]
- Khuntia, S.; Das, A.K.; Mohanty, M.; Panda, M. Prediction of Marshall parameters of modified bituminous mixtures using artificial intelligence techniques. Int. J. Transp. Sci. Technol. 2014, 3, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Khan, A.; Huyan, J.; Zhong, J.; Peng, T.; Cheng, H. Predicting Marshall parameters of flexible pavement using support vector machine and genetic programming. Constr. Build. Mater. 2021, 306, 124924. [Google Scholar] [CrossRef]
- Boscato, G.; Civera, M.; ZanottiFragonara, L. Recursive partitioning and Gaussian Process Regression for the detection and localization of damages in pultruded Glass Fiber Reinforced Polymer material. Struct. Control Health Monit. 2021, 16, 2805. [Google Scholar] [CrossRef]
- Uwanuakwa, I.D.; Ali SI, A.; Hasan MR, M.; Akpinar, P.; Sani, A.; Shariff, K.A. Artificial intelligence prediction of rutting and fatigue parameters in modified asphalt binders. Appl. Sci. 2020, 10, 7764. [Google Scholar] [CrossRef]
- Qadir, A.; Gazder, U.; Choudhary, K.U.N. Artificial neural network models for performance design of asphalt pavements reinforced with geosynthetics. Transp. Res. Record 2020, 2674, 319–326. [Google Scholar] [CrossRef]
- Pham, B.T.; Ly, H.B.; Al-Ansari, N.; Ho, L.S. A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient. Sci. Program. 2021, 2021, 3625289. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Rostami, M.; Berahmand, K.; Karami, S.; Tiwari, P.; Oussalah, M.; Band, S.S. Dual Regularized Unsupervised Feature Selection Based on Matrix Factorization and Minimum Redundancy with application in gene selection. Knowl.-Based Syst. 2022, 256, 109884. [Google Scholar] [CrossRef]
- Nasiri, E.; Berahmand, K.; Li, Y. Robust graph regularization nonnegative matrix factorization for link prediction in attributed networks. Multimed. Tools Appl. 2022, 1–24. [Google Scholar] [CrossRef]
- Zamiri, M.; Bahraini, T.; Yazdi, H.S. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Syst. Appl. 2021, 173, 114657. [Google Scholar] [CrossRef]
- Vadood, M.; Johari, M.S.; Rahai, A. Developing a hybrid artificial neural network-genetic algorithm model to predict resilient modulus of polypropylene/polyester fiber-reinforced asphalt concrete. J. Text. Inst. 2015, 106, 1239–1250. [Google Scholar] [CrossRef]
- Karahancer, S.; Capali, B.; Eriskin, E.; Morova, N.; Serin, S.; Saltan, M.; Kucukcapraz, D.O. Marshall Stability estimating using artificial neural network with polyparaphenylene terephtalamide fibre rate. In Proceedings of the 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), Sinaia, Romania, 2–5 August 2016; pp. 1–5. [Google Scholar]
- Awan, H.H.; Hussain, A.; Javed, M.F.; Qiu, Y.; Alrowais, R.; Mohamed, A.M.; Fathi, D.; Alzahrani, A.M. Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming. Buildings 2022, 7, 314. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Abtahi, S.M.; Sheikhzadeh, M.; Semnani, D. Introducing two simple models for predicting fiber-reinforced asphalt concrete behavior during longitudinal loads. J. Appl. Polym. Sci. 2008, 109, 2872–2881. [Google Scholar] [CrossRef]
- Mirabdolazimi, S.M.; Shafabakhsh, G. Rutting depth prediction of hot mix asphalts modified with forta fiber using artificial neural networks and genetic programming technique. Constr. Build. Mater. 2017, 148, 666–674. [Google Scholar] [CrossRef]
- Yardim, M.S.; Şitilbay, B.D.; Dündar, S. Modelling the effects of hydrated lime additives on asphalt mixtures by fuzzy logic and ANN. Tek. Dergi 2019, 30, 9533–9559. [Google Scholar]
- Olukanni, E.O.; Oyedepo, O.J.; Ajani, A.M. Performance and Microstructural Evaluation of Asphalt Concrete Produced with Hydrated Lime, Glass Powder and Cement Modifiers. Niger. J. Technol. Dev. 2021, 18, 296–301. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, S.; Juang, C.H. Prediction of fatigue life of rubberized asphalt concrete mixtures containing reclaimed asphalt pavement using artificial neural networks. J. Mater. Civ. Eng. 2009, 21, 253–261. [Google Scholar] [CrossRef]
- Babagoli, R.; Rezaei, M. Development of prediction models for moisture susceptibility of asphalt mixture containing combined SBR, waste CR and ASA using support vector regression and artificial neural network methods. Constr. Build. Mater. 2022, 7, 126430. [Google Scholar] [CrossRef]
- Vyas, V.; Singh, A.P.; Srivastava, A. Prediction of asphalt pavement condition using FWD deflection basin parameters and artificial neural networks. Road Mater. Pavement Des. 2020, 22, 2748–2766. [Google Scholar] [CrossRef]
- Tsai, C.H.; Chih, Y.T.; Wong, W.H.; Lee, C.Y. A hardware-efficient sigmoid function with adjustable precision for a neural network system. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 1073–1077. [Google Scholar] [CrossRef]
- Kolb, B.; Marshall, P.; Zhao, B.; Jiang, B.; Guo, H. Representing global reactive potential energy surfaces using Gaussian processes. J. Phys. Chem. A 2017, 121, 2552–2557. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; Volume 92, pp. 343–348. [Google Scholar]
- Kumar, S.C.; Chowdary, E.D.; Venkatramaphanikumar, S.; Kishore, K.K. M5P model tree in predicting student performance: A case study. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 20–21 May 2016; Volume 5, pp. 1103–1107. [Google Scholar]
- Upadhya, A.; Thakur, M.S.; Sihag, P.; Kumar, R.; Kumar, S.; Afeeza, A.; Afzal, A.; Saleel, C.A. Modelling and prediction of binder content using latest intelligent machine learning algorithms in carbon fiber reinforced asphalt concrete. Alex. Eng. J. 2022; in press. [Google Scholar]
- Kalmegh, S. Analysis of weka data mining algorithm reptree, simple cart and randomtree for classification of indian news. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 438–446. [Google Scholar]
- Alita, D.; Putra, A.D.; Darwis, D. Analysis of classic assumption test and multiple linear regression coefficient test for employee structural office recommendation. IJCCS Indones. J. Comput. Cybern. Syst. 2021, 15, 295–306. [Google Scholar] [CrossRef]
- Makendran, C.; Murugasan, R.; Velmurugan, S. Performance prediction modelling for flexible pavement on low volume roads using multiple linear regression analysis. J. Appl. Math. 2015, 2015, 192485. [Google Scholar] [CrossRef] [Green Version]
- ASTM D6913-04; Standard Test Methods for Particle Size Distribution of Soils. American Society for Testing of Materials: West Conshohocken, PA, USA, 2017.
- ASTM C-128; Standard Test Method for Specific Gravity and Absorption of Fine Aggregate. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 1992.
- ASTM C 127; Test Method for Specific Gravity and Adsorption of Coarse Aggregate. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 1992.
- ASTM C 131; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 2003.
- ASTM D4791—19; Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 2019.
- ASTM D70/D70M—21; Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method). Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 2021.
- ASTM D5/D5M—20; Standard Test Method for Penetration of Bituminous Materials. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 2003.
- ASTM D92—18; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. Annual Book of ASTM Standards. American Society for Testing of Materials: West Conshohocken, PA, USA, 2005.
- ASTM D36/D36M—14; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). American Society for Testing of Materials: West Conshohocken, PA, USA, 2020.
- ASTM D 1559; Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. American Society for Testing of Materials: West Conshohocken, PA, USA, 1989.
- Mussa, F.I.; Al-Dahawi, A.M.; Banyhussan, Q.S.; Baanoon, M.R.; Shalash, M.A. Carbon Fiber-Reinforced Asphalt Concrete: An Investigation of Some Electrical and Mechanical Properties. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012122. [Google Scholar] [CrossRef]
- Afzal, A.; Khan, S.A.; Islam, T.; Jilte, R.D.; Khan, A.; Soudagar, M.E.M. Investigation and Back-Propagation Modeling of Base Pressure at Sonic and Supersonic Mach Numbers. Phys. Fluids 2020, 32, 096109. [Google Scholar] [CrossRef]
- David, O.; Okwu, M.O.; Oyejide, O.J.; Taghinezhad, E.; Asif, A.; Kaveh, M. Optimizing Biodiesel Production from Abundant Waste Oils through Empirical Method and Grey Wolf Optimizer. Fuel 2020, 281, 118701. [Google Scholar] [CrossRef]
- Afzal, A.; Saleel, C.A.; Badruddin, I.A.; Khan, T.M.Y.; Kamangar, S.; Mallick, Z.; Samuel, O.D.; Soudagar, M.E.M. Human Thermal Comfort in Passenger Vehicles Using an Organic Phase Change Material–An Experimental Investigation, Neural Network Modelling, and Optimization. Build. Environ. 2020, 180, 107012. [Google Scholar] [CrossRef]
- Afzal, A.; Alshahrani, S.; Alrobaian, A.; Buradi, A.; Khan, S.A. Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms. Energies 2021, 14, 7254. [Google Scholar] [CrossRef]
- Afzal, A. Optimization of Thermal Management in Modern Electric Vehicle Battery Cells Employing Genetic Algorithm. J. Heat Transf. 2021, 143, 112902. [Google Scholar] [CrossRef]
- Afzal, A.; Navid, K.M.Y.; Saidur, R.; Razak, R.K.A.; Subbiah, R. Back Propagation Modeling of Shear Stress and Viscosity of Aqueous Ionic—MXene Nanofluids. J. Therm. Anal. Calorim. 2021, 145, 2129–2149. [Google Scholar] [CrossRef]
- Mokashi, I.; Afzal, A.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H.; Jilte, R.D.; Samuel, O.D. Nusselt Number Analysis from a Battery Pack Cooled by Different Fluids and Multiple Back-Propagation Modelling Using Feed-Forward Networks. Int. J. Therm. Sci. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Elumalai, P.V.; Krishna Moorthy, R.; Parthasarathy, M.; Samuel, O.D.; Owamah, H.I.; Saleel, C.A.; Enweremadu, C.C.; Sreenivasa Reddy, M.; Afzal, A. Artificial Neural Networks Model for Predicting the Behavior of Different Injection Pressure Characteristics Powered by Blend of Biofuel-Nano Emulsion. Energy Sci. Eng. 2022, 10, 2367–2396. [Google Scholar] [CrossRef]
- Veza, I.; Afzal, A.; Mujtaba, M.A.; Tuan Hoang, A.; Balasubramanian, D.; Sekar, M.; Fattah, I.M.R.; Soudagar, M.E.M.; EL-Seesy, A.I.; Djamari, D.W.; et al. Review of Artificial Neural Networks for Gasoline, Diesel and Homogeneous Charge Compression Ignition Engine: Review of ANN for Gasoline, Diesel and HCCI Engine. Alex. Eng. J 2022, 61, 8363–8391. [Google Scholar] [CrossRef]
- Bakır, H.; Ağbulut, Ü.; Gürel, A.E.; Yıldız, G.; Güvenç, U.; Soudagar, M.E.M.; Hoang, A.T.; Deepanraj, B.; Saini, G.; Afzal, A. Forecasting of Future Greenhouse Gas Emission Trajectory for India Using Energy and Economic Indexes with Various Metaheuristic Algorithms. J. Clean. Prod. 2022, 360, 131946. [Google Scholar] [CrossRef]
- Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.T.; Huang, Z.; Afzal, A.; Li, C.; Le, A.T.; et al. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658. [Google Scholar] [CrossRef]
- Sharma, J.; Soni, S.; Paliwal, P.; Saboor, S.; Chaurasiya, P.K.; Sharifpur, M.; Khalilpoor, N.; Afzal, A. A Novel Long Term Solar Photovoltaic Power Forecasting Approach Using LSTM with Nadam Optimizer: A Case Study of India. Energy Sci. Eng. 2022, 10, 2909–2929. [Google Scholar] [CrossRef]
- Ziaee, O.; Zolfaghari, N.; Baghani, M.; Baniassadi, M.; Wang, K. A modified cellular automaton model for simulating ion dynamics in a Li-ion battery electrode. Energy Equip. Syst. 2022, 10, 41–49. [Google Scholar]
- Taslimi, M.S.; Maleki Dastjerdi, S.; Bashiri Mousavi, S.; Ahmadi, P.; Ashjaee, M. Assessment and multi-objective optimization of an off-grid solar based energy system for a Conex. Energy Equip. Syst. 2021, 9, 127–143. [Google Scholar]
- Sharifi, M.; Amidpour, M.; Mollaei, S. Investigating carbon emission abatement long-term plan with the aim of energy system modeling; case study of Iran. Energy Equip. Syst. 2018, 6, 337–349. [Google Scholar]
- Zare, S.; Ayati, M.; Ha’iri Yazdi, M.R.; Kabir, A.A. Convolutional neural networks for wind turbine gearbox health monitoring. Energy Equip. Syst. 2022, 10, 73–82. [Google Scholar]
- Sabzi, S.; Asadi, M.; Moghbelli, H. Review, analysis and simulation of different structures for hybrid electrical energy storages. Energy Equip. Syst. 2017, 5, 115–129. [Google Scholar]
- Ziari, H.; Amini, A.; Goli, A.; Mirzaiyan, D. Predicting rutting performance of carbon nanotube (CNT) asphalt binders using regression models and neural networks. Constr. Build. Mater. 2018, 30, 415–426. [Google Scholar] [CrossRef]
Sr. No. | Authors | Additive Used | Technique Applied | Output | Findings |
---|---|---|---|---|---|
1. | Vadood et al., [30] | Modified HMA samples using polypropylene and polyester fibers (hybrid and single modes) | Artificial neural network; genetic algorithm | Resilient modulus of the modified Hot Mix Asphalt | ANN with two neurons per layer can accurately predict fiber-reinforced HMA’s resilient modulus. |
2. | Karahancer et al., [31] | Polyparaphenylene Terephtalamide fiber (PTF) rate | ANN | Predicting Marshall stability of asphalt pavement | With a regression value of 96%, the ANN model accurately predicted the experimental parameters. |
3. | Awan et al., [32] | - | Multi-Expression Programming (MEP); | Marshall Stability (MS) and Marshall Flow (MF) for Asphalt Base Course (ABC) and Asphalt Wearing Course (AWC) of flexible pavements. | The developed models have generated outcomes that are in agreement with the experimental data. Function and data work equally well for unknowable data. |
4. | Ameri et al., [5] | Glass and basalt fiber | ANFIS | Indirect tensile strength, moisture sensitivity, resilient modulus, and creep tests using the Marshall test | The developed ANFIS models are capable of predicting output values that are close to actual data. |
5. | Hejazi et al., [33] | Glass, nylon 6.6, polypropylene, and polyester | ANN | Marshall test results in terms of stability, flow, and specific gravity | The models concluded that glass, polyester, and nylon were better, and they were suggested for predicting any textile fibers that may be used in AC. |
6. | Mirabdolazimi and Shafabakhsh [34] | Forta fiber | Artificial neural networks, Genetic programming | Assess the rutting resistance of asphalt samples | (ANN) model for rutting depth showed good agreement with experimental results, whereas the genetic programming model is very effective. |
7. | Yardim et al., [35] | Hydrated lime | Fuzzy logic, artificial neural networks. | Marshall design test parameters of hot mix asphalt samples | The developed models provided reasonable estimations of the mixture parameters. |
8. | Olukanni et al., [36] | - | MLR and Genetic Programming Method. | Determine Marshall test outcomes including stability, flow, and Marshall quotient | The GP models outperform the MLR models in terms of R2 and lower error. |
9. | Xiao et al., [37] | Rubberized Asphalt Concrete | Neural network | Determine the ultimate fatigue life of the modified mixtures. | ANN techniques are superior to the conventional statistical prediction model for predicting the fatigue life of the modified mixtures tested. |
10. | Babagoli and Rezaei [38] | Styrene-butadiene rubber, Crumb Rubber | Artificial neural networks (ANN) Support vector regression (SVR) | The fracture energy (FE), indirect tensile strength (ITS), and resilient modulus (Mr) of mixtures | The outcomes demonstrated that ANN consistently outperformed SVR. |
Sieve Size (mm) | 25 | 20 | 16 | 12.5 | 10 | 4.75 |
Passing (%) | 100 | 97.67 | 67.47 | 30.07 | 8.27 | 0 |
Sieve Size (mm/mic) | 10 | 4.75 | 2.36 | 1.18 | 600 | 300 | 150 | 7 |
Passing (%) | 98.4 | 93.6 | 89.8 | 86.0 | 76.9 | 19.9 | 7.4 | 4.8 |
Test Properties | CA | FA | Standard Specifications |
---|---|---|---|
SG | 2.63 | 2.42 | ASTM C-128 [49] |
Apparent SG (gm/cm3) | 2.83 | 2.47 | |
Water Absorption (%) | 2.75 | 0.33 | |
Bulk SG (gm/cm3) | 1.51 | 1.68 | |
Crushing Value Test (%) | 23.43 | – | ASTM C-127 [50] |
Impact Value Test (%) | 7.95 | – | |
LAV Test (%) | 34.34 | – | ASTM C-131 [51] |
(FI) and (EI) index (%) | 14.64, 8.64 | – | ASTM D- 4791 [52] |
Test on Bitumen | Standard Specifications | Value |
---|---|---|
SG (25 °C) | ASTM-D70 [53] | 0.99 |
Penetration 25 °C, (0.1 mm) | ASTM-D5 [54] | 97.66 |
Flash Point °C | ASTM-D92 [55] | 281 |
Softening Point Test °C | ASTM-D36 [56] | 39.2 |
Properties of Fibers | GF | CF |
---|---|---|
Length (mm) | 12 | 12 |
Diameter (µm) | 15 | 5 |
Color | White | Black |
Tensile strength (Mpa) | 4700–4800 | 5790 |
Elongation (%) | 5.7 | - |
Density (gm/cc) | 2.46 | 1.80 |
Failure strain (%) | - | 2.0 |
Base | S-glass | PAN-fiber |
GF (%) | GF:CF (%) | GF:CF (%) | GF:CF (%) | CF (%) |
---|---|---|---|---|
100:0 | 75:25 | 50:50 | 25:75 | 0:100 |
No. of Specimen | Glass Fiber (100) % | 75GF:25CF (%) | 50GF:50CF (%) | 25GF:75CF (%) | Carbon Fiber (100) % | Bitumen Grade | Fiber Length (mm) | Fiber Diameter (Glass) | Fiber Diameter (Carbon) | Marshall Stability (kN) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 8.73 |
2 | 0.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 6.44 |
3 | 1 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 10.1 |
4 | 1.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 8.31 |
5 | 2 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 8.31 |
6 | 2.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.01 |
7 | 3 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 7.37 |
8 | 3.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 8.73 |
9 | 4 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 5.61 |
10 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 10.39 |
11 | 0.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 8.206 |
12 | 1 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 5.19 |
13 | 1.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 12.05 |
14 | 2 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.4 |
15 | 2.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.56 |
16 | 3 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.35 |
17 | 3.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 6.96 |
18 | 4 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 7 |
19 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 12.4 |
20 | 0.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.45 |
21 | 1 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.76 |
22 | 1.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 10.29 |
23 | 2 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.22 |
24 | 2.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.84 |
25 | 3 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 13.92 |
26 | 3.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 10.39 |
27 | 4 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.35 |
28 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 6.65 |
29 | 0.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.11 |
30 | 1 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.53 |
31 | 1.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 10.38 |
32 | 2 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 13.5 |
33 | 2.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 12.15 |
34 | 3 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 9.66 |
35 | 3.5 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 12.26 |
36 | 4 | 0 | 0 | 0 | 0 | 10 | 12 | 15 | 0 | 11.95 |
37 | 0 | 0.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.40 |
38 | 0 | 1 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.03 |
39 | 0 | 1.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.72 |
40 | 0 | 2 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 15.59 |
41 | 0 | 2.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.03 |
42 | 0 | 3 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 11.12 |
43 | 0 | 3.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.82 |
44 | 0 | 4 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 11.53 |
45 | 0 | 0.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.03 |
46 | 0 | 1 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.21 |
47 | 0 | 1.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 17.14 |
48 | 0 | 2 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 12.26 |
49 | 0 | 2.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.30 |
50 | 0 | 3 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 15.27 |
51 | 0 | 3.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 12.26 |
52 | 0 | 4 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.74 |
53 | 0 | 0.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.00 |
54 | 0 | 1 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.92 |
55 | 0 | 1.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 13.92 |
56 | 0 | 2 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.00 |
57 | 0 | 2.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.83 |
58 | 0 | 3 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 17.56 |
59 | 0 | 3.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.34 |
60 | 0 | 4 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 11.33 |
61 | 0 | 0.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 18.32 |
62 | 0 | 1 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.55 |
63 | 0 | 1.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.73 |
64 | 0 | 2 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 16.63 |
65 | 0 | 2.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 14.75 |
66 | 0 | 3 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 12.83 |
67 | 0 | 3.5 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 11.17 |
68 | 0 | 4 | 0 | 0 | 0 | 10 | 12 | 15 | 5 | 15.48 |
69 | 0 | 0 | 0.5 | 0 | 0 | 10 | 12 | 15 | 5 | 12.88 |
70 | 0 | 0 | 1 | 0 | 0 | 10 | 12 | 15 | 5 | 14.26 |
71 | 0 | 0 | 1.5 | 0 | 0 | 10 | 12 | 15 | 5 | 15.08 |
72 | 0 | 0 | 2 | 0 | 0 | 10 | 12 | 15 | 5 | 13.40 |
73 | 0 | 0 | 2.5 | 0 | 0 | 10 | 12 | 15 | 5 | 13.20 |
74 | 0 | 0 | 3 | 0 | 0 | 10 | 12 | 15 | 5 | 13.10 |
75 | 0 | 0 | 3.5 | 0 | 0 | 10 | 12 | 15 | 5 | 14.44 |
76 | 0 | 0 | 4 | 0 | 0 | 10 | 12 | 15 | 5 | 12.05 |
77 | 0 | 0 | 0.5 | 0 | 0 | 10 | 12 | 15 | 5 | 18.53 |
78 | 0 | 0 | 1 | 0 | 0 | 10 | 12 | 15 | 5 | 19.85 |
79 | 0 | 0 | 1.5 | 0 | 0 | 10 | 12 | 15 | 5 | 15.17 |
80 | 0 | 0 | 2 | 0 | 0 | 10 | 12 | 15 | 5 | 16.94 |
81 | 0 | 0 | 2.5 | 0 | 0 | 10 | 12 | 15 | 5 | 13.62 |
82 | 0 | 0 | 3 | 0 | 0 | 10 | 12 | 15 | 5 | 16.64 |
83 | 0 | 0 | 3.5 | 0 | 0 | 10 | 12 | 15 | 5 | 15.80 |
84 | 0 | 0 | 4 | 0 | 0 | 10 | 12 | 15 | 5 | 13.44 |
85 | 0 | 0 | 0.5 | 0 | 0 | 10 | 12 | 15 | 5 | 14.26 |
86 | 0 | 0 | 1 | 0 | 0 | 10 | 12 | 15 | 5 | 17.90 |
87 | 0 | 0 | 1.5 | 0 | 0 | 10 | 12 | 15 | 5 | 15.19 |
88 | 0 | 0 | 2 | 0 | 0 | 10 | 12 | 15 | 5 | 16.74 |
89 | 0 | 0 | 2.5 | 0 | 0 | 10 | 12 | 15 | 5 | 16.35 |
90 | 0 | 0 | 3 | 0 | 0 | 10 | 12 | 15 | 5 | 13.51 |
91 | 0 | 0 | 3.5 | 0 | 0 | 10 | 12 | 15 | 5 | 13.63 |
92 | 0 | 0 | 4 | 0 | 0 | 10 | 12 | 15 | 5 | 17.98 |
93 | 0 | 0 | 0.5 | 0 | 0 | 10 | 12 | 15 | 5 | 18.29 |
94 | 0 | 0 | 1 | 0 | 0 | 10 | 12 | 15 | 5 | 15.17 |
95 | 0 | 0 | 1.5 | 0 | 0 | 10 | 12 | 15 | 5 | 13.73 |
96 | 0 | 0 | 2 | 0 | 0 | 10 | 12 | 15 | 5 | 23.50 |
97 | 0 | 0 | 2.5 | 0 | 0 | 10 | 12 | 15 | 5 | 14.69 |
98 | 0 | 0 | 3 | 0 | 0 | 10 | 12 | 15 | 5 | 17.17 |
99 | 0 | 0 | 3.5 | 0 | 0 | 10 | 12 | 15 | 5 | 14.80 |
100 | 0 | 0 | 4 | 0 | 0 | 10 | 12 | 15 | 5 | 17.16 |
101 | 0 | 0 | 0 | 0.5 | 0 | 10 | 12 | 15 | 5 | 14.39 |
102 | 0 | 0 | 0 | 1 | 0 | 10 | 12 | 15 | 5 | 15.01 |
103 | 0 | 0 | 0 | 1.5 | 0 | 10 | 12 | 15 | 5 | 15.75 |
104 | 0 | 0 | 0 | 2 | 0 | 10 | 12 | 15 | 5 | 16.30 |
105 | 0 | 0 | 0 | 2.5 | 0 | 10 | 12 | 15 | 5 | 16.17 |
106 | 0 | 0 | 0 | 3 | 0 | 10 | 12 | 15 | 5 | 14.54 |
107 | 0 | 0 | 0 | 3.5 | 0 | 10 | 12 | 15 | 5 | 16.06 |
108 | 0 | 0 | 0 | 4 | 0 | 10 | 12 | 15 | 5 | 13.42 |
109 | 0 | 0 | 0 | 0.5 | 0 | 10 | 12 | 15 | 5 | 14.71 |
110 | 0 | 0 | 0 | 1 | 0 | 10 | 12 | 15 | 5 | 15.81 |
111 | 0 | 0 | 0 | 1.5 | 0 | 10 | 12 | 15 | 5 | 12.74 |
112 | 0 | 0 | 0 | 2 | 0 | 10 | 12 | 15 | 5 | 17.75 |
113 | 0 | 0 | 0 | 2.5 | 0 | 10 | 12 | 15 | 5 | 12.18 |
114 | 0 | 0 | 0 | 3 | 0 | 10 | 12 | 15 | 5 | 15.34 |
115 | 0 | 0 | 0 | 3.5 | 0 | 10 | 12 | 15 | 5 | 14.42 |
116 | 0 | 0 | 0 | 4 | 0 | 10 | 12 | 15 | 5 | 12.74 |
117 | 0 | 0 | 0 | 0.5 | 0 | 10 | 12 | 15 | 5 | 14.14 |
118 | 0 | 0 | 0 | 1 | 0 | 10 | 12 | 15 | 5 | 19.20 |
119 | 0 | 0 | 0 | 1.5 | 0 | 10 | 12 | 15 | 5 | 16.60 |
120 | 0 | 0 | 0 | 2 | 0 | 10 | 12 | 15 | 5 | 14.34 |
121 | 0 | 0 | 0 | 2.5 | 0 | 10 | 12 | 15 | 5 | 13.90 |
122 | 0 | 0 | 0 | 3 | 0 | 10 | 12 | 15 | 5 | 12.74 |
123 | 0 | 0 | 0 | 3.5 | 0 | 10 | 12 | 15 | 5 | 15.47 |
124 | 0 | 0 | 0 | 4 | 0 | 10 | 12 | 15 | 5 | 12.75 |
125 | 0 | 0 | 0 | 0.5 | 0 | 10 | 12 | 15 | 5 | 16.01 |
126 | 0 | 0 | 0 | 1 | 0 | 10 | 12 | 15 | 5 | 14.39 |
127 | 0 | 0 | 0 | 1.5 | 0 | 10 | 12 | 15 | 5 | 13.89 |
128 | 0 | 0 | 0 | 2 | 0 | 10 | 12 | 15 | 5 | 16.01 |
129 | 0 | 0 | 0 | 2.5 | 0 | 10 | 12 | 15 | 5 | 14.83 |
130 | 0 | 0 | 0 | 3 | 0 | 10 | 12 | 15 | 5 | 11.82 |
131 | 0 | 0 | 0 | 3.5 | 0 | 10 | 12 | 15 | 5 | 12.33 |
132 | 0 | 0 | 0 | 4 | 0 | 10 | 12 | 15 | 5 | 12.97 |
133 | 0 | 0 | 0 | 0 | 0.5 | 10 | 12 | 0 | 5 | 12.98 |
134 | 0 | 0 | 0 | 0 | 1 | 10 | 12 | 0 | 5 | 13.09 |
135 | 0 | 0 | 0 | 0 | 1.5 | 10 | 12 | 0 | 5 | 13.2 |
136 | 0 | 0 | 0 | 0 | 2 | 10 | 12 | 0 | 5 | 11.43 |
137 | 0 | 0 | 0 | 0 | 2.5 | 10 | 12 | 0 | 5 | 10.8 |
138 | 0 | 0 | 0 | 0 | 3 | 10 | 12 | 0 | 5 | 12.31 |
139 | 0 | 0 | 0 | 0 | 3.5 | 10 | 12 | 0 | 5 | 11.53 |
140 | 0 | 0 | 0 | 0 | 4 | 10 | 12 | 0 | 5 | 11.32 |
141 | 0 | 0 | 0 | 0 | 0.5 | 10 | 12 | 0 | 5 | 17.45 |
142 | 0 | 0 | 0 | 0 | 1 | 10 | 12 | 0 | 5 | 17.56 |
143 | 0 | 0 | 0 | 0 | 1.5 | 10 | 12 | 0 | 5 | 19.32 |
144 | 0 | 0 | 0 | 0 | 2 | 10 | 12 | 0 | 5 | 16.41 |
145 | 0 | 0 | 0 | 0 | 2.5 | 10 | 12 | 0 | 5 | 17.35 |
146 | 0 | 0 | 0 | 0 | 3 | 10 | 12 | 0 | 5 | 19.32 |
147 | 0 | 0 | 0 | 0 | 3.5 | 10 | 12 | 0 | 5 | 17.14 |
148 | 0 | 0 | 0 | 0 | 4 | 10 | 12 | 0 | 5 | 17.16 |
149 | 0 | 0 | 0 | 0 | 0.5 | 10 | 12 | 0 | 5 | 19.43 |
150 | 0 | 0 | 0 | 0 | 1 | 10 | 12 | 0 | 5 | 17.97 |
151 | 0 | 0 | 0 | 0 | 1.5 | 10 | 12 | 0 | 5 | 17.87 |
152 | 0 | 0 | 0 | 0 | 2 | 10 | 12 | 0 | 5 | 17.66 |
153 | 0 | 0 | 0 | 0 | 2.5 | 10 | 12 | 0 | 5 | 17.45 |
154 | 0 | 0 | 0 | 0 | 3 | 10 | 12 | 0 | 5 | 18.8 |
155 | 0 | 0 | 0 | 0 | 3.5 | 10 | 12 | 0 | 5 | 17.66 |
156 | 0 | 0 | 0 | 0 | 4 | 10 | 12 | 0 | 5 | 17.03 |
157 | 0 | 0 | 0 | 0 | 0.5 | 10 | 12 | 0 | 5 | 14.54 |
158 | 0 | 0 | 0 | 0 | 1 | 10 | 12 | 0 | 5 | 18.39 |
159 | 0 | 0 | 0 | 0 | 1.5 | 10 | 12 | 0 | 5 | 16.93 |
160 | 0 | 0 | 0 | 0 | 2 | 10 | 12 | 0 | 5 | 14.96 |
161 | 0 | 0 | 0 | 0 | 2.5 | 10 | 12 | 0 | 5 | 14.13 |
162 | 0 | 0 | 0 | 0 | 3 | 10 | 12 | 0 | 5 | 16.31 |
163 | 0 | 0 | 0 | 0 | 3.5 | 10 | 12 | 0 | 5 | 14.34 |
164 | 0 | 0 | 0 | 0 | 4 | 10 | 12 | 0 | 5 | 15.17 |
S. No. | BC (%) | GF (%) | 75GF:25CF | 50GF:50CF | 25GF:75CF | CF (%) | (VG) | FL (mm) | FD Glass Fiber (µm) | FD Carbon Fiber (µm) | MS (kN) | No. of Observations from Current Research |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dataset Range | ||||||||||||
1. | 4.5–6.0 | 0–4.0 | - | - | - | - | 10 | 12 | 15 | 5 | 5.19–13.92 | 36 |
2. | 4.5–6.0 | - | - | - | - | 0.5–4.0 | 10 | 12 | 15 | 5 | 12.31–19.32 | 32 |
3. | 4.5–6.0 | - | 0.5–4.0 | - | - | - | 10 | 12 | 15 | 5 | 11.12–18.32 | 32 |
4. | 4.5–6.0 | - | - | 0.5–4.0 | - | - | 10 | 12 | 15 | 5 | 12.05–23.50 | 32 |
5. | 4.5–6.0 | - | - | 0.5–4.0 | - | 10 | 12 | 15 | 5 | 11.82–19.20 | 32 | |
Total observations | 164 |
Training | |||||||||||
BC (%) | GF (%) | 75GF:25CF | 50GF:50CF | 25GF:75CF | CF (%) | (VG) | FL(mm) | FD Glass Fiber (µm) | FD Carbon Fiber (µm) | MS (kN) | |
Mean | 5.2545 | 0.3818 | 0.4500 | 0.4545 | 0.4227 | 0.4455 | 10.0000 | 11.5636 | 11.5909 | 3.9091 | 14.0780 |
Standard Error | 0.0543 | 0.0890 | 0.0998 | 0.0991 | 0.0958 | 0.0999 | 0.0000 | 0.2152 | 0.6021 | 0.1978 | 0.3014 |
Median | 5.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 10.0000 | 12.0000 | 15.0000 | 5.0000 | 14.3 |
Standard Deviation | 0.5697 | 0.9334 | 1.0469 | 1.0395 | 1.0050 | 1.0478 | 0.0000 | 2.2566 | 6.3148 | 2.0745 | 3.1614 |
Standard Variance | 0.3245 | 0.8712 | 1.0961 | 1.0805 | 1.0100 | 1.0979 | 0.0000 | 5.0922 | 39.8770 | 4.3036 | 9.994 |
Range | 1.5000 | 3.5000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 0.0000 | 12.0000 | 15.0000 | 5.0000 | 17.06 |
Minimum | 4.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 10.0000 | 0.0000 | 0.0000 | 0.0000 | 6.44 |
Maximum | 6.0000 | 3.5000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 10.0000 | 12.0000 | 15.0000 | 5.0000 | 23.5 |
Confidence Level (95.0%) | 0.1077 | 0.1764 | 0.1978 | 0.1964 | 0.1899 | 0.1980 | 0.0000 | 0.4264 | 1.1933 | 0.3920 | 0.59742 |
Testing | |||||||||||
BC (%) | GF (%) | 75GF:25CF | 50GF:50CF | 25GF:25CF | CF (%) | (VG) | FL (mm) | FD Glass Fiber (µm) | FD (µm) Carbon Fiber | MS (kN) | |
Mean | 5.2407 | 0.5556 | 0.4167 | 0.4074 | 0.4722 | 0.4259 | 10.0000 | 12.0000 | 11.9444 | 3.8889 | 13.7028 |
Standard Error | 0.0745 | 0.1633 | 0.1359 | 0.1380 | 0.1474 | 0.1357 | 0.0000 | 0.0000 | 0.8298 | 0.2855 | 0.4240 |
Median | 5.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 10.0000 | 12.0000 | 15.0000 | 5.0000 | 13.6700 |
Standard Deviation | 0.5472 | 1.2001 | 0.9988 | 1.0144 | 1.0834 | 0.9972 | 0.0000 | 0.0000 | 6.0980 | 2.0982 | 3.1161 |
Standard Variance | 0.2994 | 1.4403 | 0.9976 | 1.0290 | 1.1737 | 0.9944 | 0.0000 | 0.0000 | 37.1855 | 4.4025 | 9.7102 |
Range | 1.5000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 0.0000 | 0.0000 | 15.0000 | 5.0000 | 14.6600 |
Minimum | 4.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 10.0000 | 12.0000 | 0.0000 | 0.0000 | 5.1900 |
Maximum | 6.0000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 10.0000 | 12.0000 | 15.0000 | 5.0000 | 19.8500 |
Confidence Level (95.0%) | 0.1494 | 0.3276 | 0.2726 | 0.2769 | 0.2957 | 0.2722 | 0.0000 | 0.0000 | 1.6644 | 0.5727 | 0.8505 |
Models Approaches | CC | R2 | MAE (kN) | RMSE (kN) | RAE (%) | RRSE (%) |
---|---|---|---|---|---|---|
Training | ||||||
GP-PUK | 0.8383 | 0.7027 | 1.4276 | 1.7688 | 57.55 | 56.21 |
M5P | 0.8396 | 0.7049 | 1.3358 | 1.7138 | 53.85 | 54.46 |
RT | 0.8414 | 0.7079 | 1.2008 | 0.0171 | 48.41 | 54.42 |
Testing | ||||||
GP-PUK | 0.8187 | 0.6702 | 1.5350 | 1.8524 | 64.56 | 59.57 |
M5P | 0.8172 | 0.6678 | 1.5264 | 1.8331 | 64.20 | 58.94 |
RT | 0.7936 | 0.6298 | 1.6573 | 1.9848 | 69.70 | 63.82 |
Models Approaches | CC | R2 | MAE (kN) | RMSE (kN) | RAE (%) | RRSE (%) |
---|---|---|---|---|---|---|
Training | ||||||
ANN | 0.8858 | 0.7846 | 1.4449 | 1.8391 | 58.25 | 58.44 |
MLR | 0.7647 | 0.5847 | 1.6509 | 2.0278 | 66.55 | 64.44 |
Testing | ||||||
ANN | 0.8392 | 0.7042 | 1.4996 | 1.8315 | 63.07 | 58.89 |
MLR | 0.7976 | 0.6361 | 1.6387 | 1.8910 | 68.92 | 60.81 |
Statistic | Actual | ANN | GP-PUK | M5P | RT | MLR |
---|---|---|---|---|---|---|
Minimum | 5.190 | 5.701 | 8.986 | 8.672 | 8.310 | 8.854 |
Maximum | 19.850 | 16.941 | 16.802 | 16.724 | 18.530 | 16.741 |
1st Quartile | 12.178 | 11.455 | 13.656 | 13.240 | 12.415 | 13.474 |
Mean | 13.703 | 13.028 | 14.148 | 14.142 | 14.208 | 14.025 |
3rd Quartile | 15.995 | 15.484 | 15.901 | 16.485 | 16.060 | 15.618 |
IQR | 3.818 | 4.029 | 2.245 | 3.246 | 3.645 | 2.144 |
Row No. | Input Parameter | Output Parameter | MLR Model | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | MAE | RMSE | ||||||||||||
BC (%) | GF (%) | 75GF: 25CF | 50GF: 50. CF | 25GF: 75CF | CF (%) | Bitumen grade (VG) | FL (mm) | FD Glass (µm) | FD Carbon (µm) | MS (kN) | ||||
1 | - | 0.8392 | 1.4996 | 1.8315 | ||||||||||
2 | 0.7243 | 1.7134 | 2.1435 | |||||||||||
3 | 0.7522 | 1.7549 | 2.0623 | |||||||||||
4 | 0.7578 | 1.7087 | 2.0387 | |||||||||||
5 | 0.7859 | 1.6874 | 1.9425 | |||||||||||
6 | 0.7859 | 1.6989 | 1.9439 | |||||||||||
7 | 0.7872 | 1.6408 | 1.9373 | |||||||||||
8 | 0.7963 | 1.6550 | 1.9059 | |||||||||||
9 | 0.7937 | 1.6628 | 1.9100 | |||||||||||
10 | 0.7941 | 1.6635 | 1.9200 | |||||||||||
11 | 0.7909 | 1.6739 | 1.9251 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhya, A.; Thakur, M.S.; Al Ansari, M.S.; Malik, M.A.; Alahmadi, A.A.; Alwetaishi, M.; Alzaed, A.N. Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques. Materials 2022, 15, 8944. https://doi.org/10.3390/ma15248944
Upadhya A, Thakur MS, Al Ansari MS, Malik MA, Alahmadi AA, Alwetaishi M, Alzaed AN. Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques. Materials. 2022; 15(24):8944. https://doi.org/10.3390/ma15248944
Chicago/Turabian StyleUpadhya, Ankita, Mohindra Singh Thakur, Mohammed Saleh Al Ansari, Mohammad Abdul Malik, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, and Ali Nasser Alzaed. 2022. "Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques" Materials 15, no. 24: 8944. https://doi.org/10.3390/ma15248944
APA StyleUpadhya, A., Thakur, M. S., Al Ansari, M. S., Malik, M. A., Alahmadi, A. A., Alwetaishi, M., & Alzaed, A. N. (2022). Marshall Stability Prediction with Glass and Carbon Fiber Modified Asphalt Mix Using Machine Learning Techniques. Materials, 15(24), 8944. https://doi.org/10.3390/ma15248944