Critical Current Density in d-Wave Hubbard Superconductors
Abstract
:1. Introduction
2. The Hubbard Model Approach and Related Considerations
- The electrons in the superconductor state travel across the crystal at a finite velocity (v) of less than c. Otherwise, there would not be a finite critical current.
- In a dispersive medium, the velocity of electrons can be estimated by the gradient of the relation of dispersion ε(k), but in the case of superconductors, it needs to be estimated from the quasiparticle’s relation corresponding to Cooper pairs.
- The electronic states that mainly participate in the formation of Cooper pairs are those near the Fermi; therefore, the higher velocity corresponds to that on the FS. Thus, for a given direction of , the group velocity involves the states such that and .
- The Cooper pairs are formed by electrons with the wave vectors k and −k, whereby an electron travels in an opposite direction from the other. Analogously to the Mott-insulator transition, hole doping is considered for the carriers’ density from when it is half-filled [39].
- In anisotropic superconductivity, the electrons with wave vectors close to the nodes have a weak superconducting gap and require very low temperatures to form the Cooper pairs; therefore, the anti-nodal states play a more dynamic role in carrying the superconducting current [40].
3. Critical Current Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 1976, 5, 581–822. [Google Scholar] [CrossRef]
- Dadiel, J.L.; Naik, S.P.K.; Pęczkowski, P.; Sugiyama, J.; Ogino, H.; Sakai, N.; Kazuya, Y.; Warski, T.; Wojcik, A.; Oka, T.; et al. Synthesis of Dense MgB2 Superconductor via In Situ and Ex Situ Spark Plasma Sintering Method. Materials 2021, 14, 7395. [Google Scholar] [CrossRef]
- Pęczkowski, P.; Łuszczek, M.; Szostak, E.; Muniraju, N.K.C.; Krztoń-Maziopa, A.; Gondek, Ł. Superconductivity and appearance of negative magnetocaloric effect in Ba1–xKxBiO3 perovskites, doped by Y, La and Pr. Acta Mater. 2021, 222, 117437. [Google Scholar] [CrossRef]
- Huang, G.Q.; Xing, Z.W.; Xing, D.Y. Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 2015, 106, 113107. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.S.; Badía-Majós, A. Nature of the nodal kink in angle-resolved photoemission spectra of cuprate superconductors. Phys. Rev. B 2009, 79, 054528. [Google Scholar] [CrossRef] [Green Version]
- Božović, I.; Bollinger, A.T.; Wu, J.; He, X. Can high-Tc superconductivity in cuprates be explained by the conventional BCS theory? Low Temp. Phys. 2018, 44, 519–527. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Coldea, A.I.; Ding, H.; Fisher, I.R.; Hirschfeld, P.J.; Kotliar, G. Iron pnictides and chalcogenides: A new paradigm for superconductivity. Nature 2022, 601, 35–44. [Google Scholar] [CrossRef]
- Ruiz, H.; Badía-Majós, A. Strength of the phonon-coupling mode in La2−xSrxCuO4, Bi2Sr2CaCu2O8+x and YBa2Cu3O6+x composites along the nodal direction. Curr. Appl. Phys. 2012, 12, 550–564. [Google Scholar] [CrossRef]
- Bednorz, J.G. Possible highTc superconductivity in the Ba-La-Cu-O system. Eur. Phys. J. B 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Tang, C.Y.; Lin, Z.F.; Zhang, J.X.; Guo, X.C.; Zhong, Y.G.; Guan, J.Y.; Gao, S.Y.; Rao, Z.C.; Zhao, J.; Huang, Y.B.; et al. Antinodal kink in the band dispersion of electron-doped cuprate La2−xCexCuO4±δ. npj Quantum Mater. 2022, 7, 1–6. [Google Scholar] [CrossRef]
- Sigrist, M.; Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 1991, 63, 239–311. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962, 8, 250–253. [Google Scholar] [CrossRef]
- Badía-Majós, A.; López, C.; Ruiz, H.S. General critical states in type-II superconductors. Phys. Rev. B 2009, 80, 144509. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.S.; Badía-Majós, A.; Rondan, H.S.R. Smooth double critical state theory for type-II superconductors. Supercond. Sci. Technol. 2010, 23. [Google Scholar] [CrossRef]
- Robert, B.C.; Fareed, M.U.; Ruiz, H.S. How to Choose the Superconducting Material Law for the Modelling of 2G-HTS Coils. Materials 2019, 12, 2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Ruiz, H.S.; Zhai, Y.; Geng, J.; Shen, B.; Coombs, T.A. Study of the Pulsed Field Magnetization Strategy for the Superconducting Rotor. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Ruiz, H.S.; Zhang, X.; Coombs, T.A. Resistive-Type Superconducting Fault Current Limiters: Concepts, Materials, and Numerical Modeling. IEEE Trans. Appl. Supercond. 2014, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, M.; Ruiz, H.S.; Coombs, T.A. Crossed-magnetic-field experiments on stacked second generation superconducting tapes: Reduction of the demagnetization effects. Appl. Phys. Lett. 2014, 104, 232602. [Google Scholar] [CrossRef]
- Fareed, M.U.; Kapolka, M.; Robert, B.C.; Clegg, M.; Ruiz, H.S. 3D FEM Modeling of CORC Commercial Cables with Bean’s Like Magnetization Currents and Its AC-Losses Behavior. IEEE Trans. Appl. Supercond. 2022, 32, 1–5. [Google Scholar] [CrossRef]
- Kapolka, M.; Ruiz, H.S. Maximum reduction of energy losses in multicore MgB2 wires by metastructured soft-ferromagnetic coatings. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1963, 276, 238–257. [Google Scholar] [CrossRef]
- Spalek, J.; Oleá, A.M.; Chao, K.A. Magnetic Phases of Strongly Correlated Electrons in a Nearly Half-Filled Narrow Band. Phys. Status solidi (b) 1981, 108, 329–340. [Google Scholar] [CrossRef]
- Ogata, M.; Himeda, A. Superconductivity and Antiferromagnetism in an Extended Gutzwiller Approximation fort–JModel: Effect of Double-Occupancy Exclusion. J. Phys. Soc. Jpn. 2003, 72, 374–391. [Google Scholar] [CrossRef]
- Scalapino, D.J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 2012, 84, 1383–1417. [Google Scholar] [CrossRef] [Green Version]
- Kordyuk, A.; Zabolotnyy, V.; Evtushinsky, D.; Inosov, D.; Kim, T.; Büchner, B.; Borisenko, S. An ARPES view on the high-T c problem: Phonons vs. spin-fluctuations. Eur. Phys. J. Spéc. Top. 2010, 188, 153–162. [Google Scholar] [CrossRef]
- Spałek, J. Fifty years of Hubbard and Anderson lattice models: From magnetism to unconventional superconductivity—A brief overview. Philos. Mag. 2014, 95, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Pickett, W.E. Single Spin Superconductivity. Phys. Rev. Lett. 1996, 77, 3185–3188. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Yi, C.; Shi, Y.; Zhou, Y.; Zheng, G.-Q. Spin-triplet superconductivity in K2Cr3As3. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Steffens, P.; Sidis, Y.; Kulda, J.; Mao, Z.Q.; Maeno, Y.; Mazin, I.I.; Braden, M. Spin Fluctuations in Sr2RuO4 from Polarized Neutron Scattering: Implications for Superconductivity. Phys. Rev. Lett. 2019, 122, 047004. [Google Scholar] [CrossRef]
- Pérez, L.A.; Wang, C. dx2–y2 pairing in the generalized Hubbard square-lattice model. Solid State Commun. 2001, 118, 589–593. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Z.; Ruiz, H.S.; Geng, J.; A Coombs, T. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors. Supercond. Sci. Technol. 2016, 30. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Z.; Geng, J.; Shen, B.; Ma, J.; Li, C.; Zhang, H.; Dong, Q.; Coombs, T.A. Study of Critical Current and n-Values of 2G HTS Tapes: Their Magnetic Field-Angular Dependence. J. Supercond. Nov. Magn. 2018, 31, 3847–3854. [Google Scholar] [CrossRef] [Green Version]
- Osipov, M.; Starikovskii, A.; Anishenko, I.; Pokrovskii, S.; Abin, D.; Rudnev, I. The influence of temperature on levitation properties of CC-tape stacks. Supercond. Sci. Technol. 2021, 34, 045003. [Google Scholar] [CrossRef]
- Schüttler, H.-B.; Fedro, A.J. Copper-oxygen charge excitations and the effective-single-band theory of cuprate superconductors. Phys. Rev. B 1992, 45, 7588–7591. [Google Scholar] [CrossRef]
- Mazin, I.I.; Singh, D.J. Ferromagnetic Spin Fluctuation Induced Superconductivity inSr2RuO4. Phys. Rev. Lett. 1997, 79, 733–736. [Google Scholar] [CrossRef] [Green Version]
- Millán, B.; Hernández-Hernández, I.J.; Pérez, L.A.; Millán, J.S. A comparison of optimal doping behaviors between d- and s*-wave superconducting ground states. Rev. Mex. De Física 2021, 67, 312–317. [Google Scholar] [CrossRef]
- Pérez, L.A.; Millán, J.S.; Wang, C. Spin singlet and triplet superconductivity induced by correlated hopping interactions. Int. J. Mod. Phys. B 2010, 24, 5229–5239. [Google Scholar] [CrossRef]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263. [Google Scholar] [CrossRef] [Green Version]
- Perez, L.; Millán, J.; Domínguez, B.; Wang, C. Electronic specific heat of anisotropic superconductors and its doping dependence. J. Magn. Magn. Mater. 2007, 310, e129–e131. [Google Scholar] [CrossRef]
- Stangl, A.; Palau, A.; Deutscher, G.; Obradors, X.; Puig, T. Ultra-high critical current densities of superconducting YBa2Cu3O7-δ thin films in the overdoped state. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Varshney, D.; Yogi, A.; Dodiya, N.; Mansuri, I. Alkaline Earth (Ca) and Transition Metal (Ni) Doping on The Transport Properties of Y1-XCaxBa2(Cu1-YNiy)3O7-δ Superconductors. J. Mod. Phys. 2011, 02, 922–927. [Google Scholar] [CrossRef] [Green Version]
- Beyers, R.; Shaw, T. The Structure of Y1Ba2Cu3O7-δ and its Derivatives. Solid State Phys. 1989, 42, 135–212. [Google Scholar] [CrossRef]
- Marder, M.P. Condensed Matter Physics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2010; pp. 455–456. [Google Scholar]
- Millan, B.; Perez, L.A.; Millan, J.S. Optimal doping for d-wave superconducting ground states within the generalized Hubbard model. Rev. Mex. Física 2018, 64, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Mottershead, J.D.F.; Fournier, D.; Bostwick, A.; McChesney, J.; Rotenberg, E.; Liang, R.; Hardy, W.N.; Sawatzky, G.A.; Elfimov, I.S.; et al. In situ doping control of the surface of high-temperature superconductors. Nat. Phys. 2008, 4, 527–531. [Google Scholar] [CrossRef]
- Voo, K.-K.; Chen, H.-Y.; Wu, W.C. Defect and anisotropic gap-induced quasi-one-dimensional modulation of the local density of states ofYBa2Cu3O7−δ. Phys. Rev. B 2003, 68, 012505. [Google Scholar] [CrossRef] [Green Version]
- I Kosse, A.; Prokhorov, A.Y.; A Khokhlov, V.; Levchenko, G.; Semenov, A.; Kovalchuk, D.G.; Chernomorets, M.P.; Mikheenko, P.N. Measurements of the magnetic field and temperature dependences of the critical current in YBCO films and procedures for an appropriate theoretical model selection. Supercond. Sci. Technol. 2008, 21. [Google Scholar] [CrossRef]
- Koblischka-Veneva, A.; Koblischka, M.R.; Berger, K.; Nouailhetas, Q.; Douine, B.; Muralidhar, M.; Murakami, M. Comparison of Temperature and Field Dependencies of the Critical Current Densities of Bulk YBCO, MgB2, and Iron-Based Superconductors. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Badía-Majós, A.; López, C. Modelling current voltage characteristics of practical superconductors. Supercond. Sci. Technol. 2014, 28. [Google Scholar] [CrossRef]
Single-particle parameters |
with with |
Electron-electron interaction parameters |
, with |
, with , , and |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millán, J.S.; Millán, J.; Pérez, L.A.; Ruiz, H.S. Critical Current Density in d-Wave Hubbard Superconductors. Materials 2022, 15, 8969. https://doi.org/10.3390/ma15248969
Millán JS, Millán J, Pérez LA, Ruiz HS. Critical Current Density in d-Wave Hubbard Superconductors. Materials. 2022; 15(24):8969. https://doi.org/10.3390/ma15248969
Chicago/Turabian StyleMillán, José Samuel, Jorge Millán, Luis A. Pérez, and Harold S. Ruiz. 2022. "Critical Current Density in d-Wave Hubbard Superconductors" Materials 15, no. 24: 8969. https://doi.org/10.3390/ma15248969
APA StyleMillán, J. S., Millán, J., Pérez, L. A., & Ruiz, H. S. (2022). Critical Current Density in d-Wave Hubbard Superconductors. Materials, 15(24), 8969. https://doi.org/10.3390/ma15248969