Influence of Laser Parameters on the Texturing of 420 Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Raw Material
3.2. Texturing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nath, S.D.; Clinning, E.; Gupta, G.; Wuelfrath-Poirier, V.; L’Espérance, G.; Gulsoy, O.; Atre, S.V. Effects of Nb and Mo on the microstructure and properties of 420 stainless steel processed by laser-powder bed fusion. Addit. Manuf. 2019, 28, 682–691. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Q.; Song, B.; Liu, Y.; Luo, X.; Wen, S.; Shi, Y. Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting. Mater. Manuf. Process. 2015, 30, 1283–1289. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, X.; Li, D.; Yang, Z.; Lu, R. Effect of sintering temperature on microstructure and properties of MIM420 stainless steel. Powder Metall. 2021, 65, 214–221. [Google Scholar] [CrossRef]
- Nath, S.D.; Gupta, G.; Kearns, M.; Gulsoy, O.; Atre, S.V. Effects of layer thickness in laser-powder bed fusion of 420 stainless steel. Rapid Prototyp. J. 2020, 26, 1197–1208. [Google Scholar] [CrossRef]
- Momenzadeh, N.; Nath, S.D.; Berfield, T.A.; Atre, S.V. In Situ Measurement of Thermal Strain Development in 420 Stainless Steel Additive Manufactured Metals. Exp. Mech. 2019, 59, 819–827. [Google Scholar] [CrossRef]
- Nath, S.D.; Okello, A.; Kelkar, R.; Gupta, G.; Kearns, M.; Atre, S.V. Adapting L-PBF process for fine powders: A case study in 420 stainless steel. Mater. Manuf. Process. 2021, 37, 1320–1331. [Google Scholar] [CrossRef]
- Nath, S.D.; Irrinki, H.; Gupta, G.; Kearns, M.; Gulsoy, O.; Atre, S. Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion. Powder Technol. 2019, 343, 738–746. [Google Scholar] [CrossRef]
- Cunha, A.; Marques, A.; Gasik, M.; Trindade, B. Influence of temperature processing on the microstructure and hardness of the 420 stainless steel produced by hot pressing. Mater. Manuf. Process. 2022, 1–8. [Google Scholar] [CrossRef]
- Horodek, P.; Eseev, M.K.; Kobets, A.G. Studies of stainless steel exposed to sandblasting. Nukleonika 2015, 60, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Mufti, R.A.; Mosarof, M.H.; Khuong, L.S.; Quazi, M.M. Surface Texture Manufacturing Techniques and Tribological Effect of Surface Texturing on Cutting Tool Performance: A Review. Crit. Rev. Solid State Mater. Sci. 2016, 41, 447–481. [Google Scholar] [CrossRef]
- Babu, V.; Yaradi, M.; Thammineni, D.T. A Review on Recent Trends in Surface Coatings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012079. [Google Scholar] [CrossRef]
- Wahab, J.A.; Ghazali, M.J.; Yusoff, W.M.W.; Sajuri, Z. Enhancing material performance through laser surface texturing: A review. Trans. Inst. Met. Finish. 2016, 94, 193–198. [Google Scholar] [CrossRef]
- Ormanova, M.; Petrov, P.; Kovacheva, D. Electron beam surface treatment of tool steels. Vacuum 2016, 135, 7–12. [Google Scholar] [CrossRef]
- Thomas, S.J.; Kalaichelvan, K. Comparative study of the effect of surface texturing on cutting tool in dry cutting. Mater. Manuf. Process. 2018, 33, 683–694. [Google Scholar] [CrossRef]
- Steyer, P.; Valette, S.; Forest, B.; Millet, J.P.; Donnet, C.; Audouard, E. Surface modification of martensitic stainless steels by laser marking and its consequences regarding corrosion resistance. Surf. Eng. 2006, 22, 167–172. [Google Scholar] [CrossRef]
- Netprasert, O.; Tangwarodomnukun, V. Surface Hardening of AISI 420 Stainless Steel by Using a Nanosecond Pulse Laser. Mater. Sci. Forum 2018, 911, 44–48. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Torkamany, M.J.; Rouh, A.R.S.; Sabbaghzade, J. Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd: YAG laser. Mater. Des. 2010, 31, 2553–2560. [Google Scholar] [CrossRef]
- Gora, W.S.; Carstensen, J.V.; Wlodarczyk, K.L.; Laursen, M.B.; Hansen, E.B.; Hand, D.P. A Novel Process for Manufacturing High-Friction Rings with a Closely Defined Coefficient of Static Friction (Relative Standard Deviation 3.5%) for Application in Ship Engine Components. Materials 2022, 15, 448. [Google Scholar] [CrossRef]
- Zul, M.H.; Ishak, M.; Aiman, M.H.; Quazi, M.M. Influence of laser power in nanosecond laser texturing for a hydrophobic state on SS316L. J. Mech. Eng. Sci. 2021, 15, 8592–8600. [Google Scholar] [CrossRef]
- Kurniawan, R.; Ko, T.J. A Study of Surface Texturing Using Piezoelectric Tool Holder Actuator on Conventional CNC Turning. Int. J. Precis. Eng. Manuf. 2013, 14, 199–206. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, R.; Kango, S.; Sharma, V.S. Recent progresses and applications in laser-based surface texturing systems. Mater. Today Commun. 2021, 26, 101736. [Google Scholar] [CrossRef]
- Amoroso, P.J.; Ramalho, A.; Richhariya, V.; Silva, F.S.; Cavaleiro, A. Tribological performance of laser-textured steel surfaces in unidirectional sliding line-contact (block-on-ring). Lubr. Sci. 2021, 33, 417–431. [Google Scholar] [CrossRef]
- Shivakoti, I.; Kibria, G.; Das, S.; Sharma, A.; Pradhan, B.B.; Chatterjee, S. Laser surface texturing on Ti-6Al-4V. Mater. Manuf. Process. 2021, 36, 858–867. [Google Scholar] [CrossRef]
- Cunha, A.; Ferreira, R.; Trindade, B.; Silva, F.S.; Carvalho, O. Reinforcement of a laser-textured 316L steel with CuCoBe-diamond composites through laser sintering. Mater. Manuf. Process. 2020, 35, 1032–1039. [Google Scholar] [CrossRef]
- Etsion, I.; Sher, E. Improving fuel efficiency with laser surface textured piston rings. Tribol. Int. 2009, 42, 542–547. [Google Scholar] [CrossRef]
- Ito, S.; Takahashi, K.; Sasaki, S. Generation mechanism of friction anisotropy by surface texturing under boundary lubrication. Tribol. Int. 2020, 149, 105598. [Google Scholar] [CrossRef]
- Pan, Q.; Cao, Y.; Xue, W.; Zhu, D.; Liu, W. Picosecond Laser-Textured Stainless Steel Superhydrophobic Surface with an Antibacterial Adhesion Property. Langmuir 2019, 35, 11414–11421. [Google Scholar] [CrossRef]
- Fatoba, O.S.; Popoola, P.A.I.; Pityana, S.L.; Adesina, O.S. Computational Dynamics of Anti-Corrosion Performance of Laser Alloyed Metallic Materials. In Fiber Laser; Paul, M.C., Ed.; InTech Open: Rijeka, Croatia, 2016; ISBN 978-953-51-2257-9. [Google Scholar]
- Pereira, H.; Carvalho, O.; Miranda, G.; Silva, F.S. Pure magnesium laser surface modification using Nd:YAG laser. Mater. Technol. 2020, 36, 811–815. [Google Scholar] [CrossRef]
- Lickschat, P.; Metzner, D.; Weißmantel, S. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int. J. Adv. Manuf. Technol. 2020, 109, 1167–1175. [Google Scholar] [CrossRef]
- Hazzan, K.E.; Pacella, M.; See, T.L. Laser processing of hard and ultra-hard materials for micro-machining and surface engineering applications. Micromachines 2021, 12, 895. [Google Scholar] [CrossRef]
- Ezhilmaran, V.; Vijayaraghavan, L.; Vasa, N.J.; Krishnan, S. Influence of pulse width in laser assisted texturing on moly-chrome films. Appl. Phys. A Mater. Sci. Process. 2018, 124, 167. [Google Scholar] [CrossRef]
- Brown, M.S.; Arnold, C.B. Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification. In Laser Precision Microfabrication; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 135, pp. 91–120. ISBN 978-3-642-10522-7. [Google Scholar]
- Xi, X.; Pan, Y.; Wang, P.; Fu, X. Effect of laser processing parameters on surface texture of Ti6Al4V alloy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 4–10. [Google Scholar] [CrossRef]
- Marques, A.; Cunha, A.; Faria, S.; Silva, F.S.; Carvalho, O. Predictive models on the influence of laser texturing parameters on the Inconel 718 surface by using Nd: YVO4 laser. Opt. Laser Technol. 2022, 154, 108320. [Google Scholar] [CrossRef]
Laser Parameters | Drawing Parameters | Laser Energy Fluence—F (J/mm2) | ||
---|---|---|---|---|
Laser Power—P (%) | Scanning Speed—s (mm/s) | Number of Passes—n | Line Spacing—l (µm) | |
1 (0.3 W) | 100 | 1 | 10 | |
16 (4.8 W) | 500 | 8 | 20 | |
64 (19.2 W) | 2000 | 32 | 30 | 0 to 7680 |
100 (30 W) | 5000 | 128 | 40 | |
256 | 50 |
Element | Fe | Cr | Mn | C | P + S + O |
---|---|---|---|---|---|
(wt.%) | 81.9 ± 0.5 | 14.1 ± 0.3 | 0.25 ± 0.08 | 1.5 ± 0.1 | balance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, Â.; Bartolomeu, F.; Silva, F.; Trindade, B.; Carvalho, Ó. Influence of Laser Parameters on the Texturing of 420 Stainless Steel. Materials 2022, 15, 8979. https://doi.org/10.3390/ma15248979
Cunha Â, Bartolomeu F, Silva F, Trindade B, Carvalho Ó. Influence of Laser Parameters on the Texturing of 420 Stainless Steel. Materials. 2022; 15(24):8979. https://doi.org/10.3390/ma15248979
Chicago/Turabian StyleCunha, Ângela, Flávio Bartolomeu, Filipe Silva, Bruno Trindade, and Óscar Carvalho. 2022. "Influence of Laser Parameters on the Texturing of 420 Stainless Steel" Materials 15, no. 24: 8979. https://doi.org/10.3390/ma15248979
APA StyleCunha, Â., Bartolomeu, F., Silva, F., Trindade, B., & Carvalho, Ó. (2022). Influence of Laser Parameters on the Texturing of 420 Stainless Steel. Materials, 15(24), 8979. https://doi.org/10.3390/ma15248979