Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments’ Design
2.2. Metallurgical Characterization
2.3. Microhardness Test
2.4. Mechanical Tests
2.5. Statistical Analysis
3. Results
3.1. Instruments’ Design
3.2. Metallurgical Characterization
3.3. Microhardness
3.4. Mechanical Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Silva, E.; Giraldes, J.F.N.; Lima, C.O.; Vieira, V.T.L.; Elias, C.N.; Antunes, H.S. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int. Endod. J. 2019, 52, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Vieira, V.T.L.; Hecksher, F.; Dos Santos Oliveira, M.R.S.; Dos Santos Antunes, H.; Moreira, E.J.L. Cyclic fatigue using severely curved canals and torsional resistance of thermally treated reciprocating instruments. Clin. Oral. Investig. 2018, 22, 2633–2638. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Peng, B.; Zheng, Y. An overview of the mechanical properties of nickel–titanium endodontic instruments. Endod. Topics 2013, 29, 42–54. [Google Scholar] [CrossRef]
- Zupanc, J.; Vahdat-Pajouh, N.; Schäfer, E. New thermomechanically treated NiTi alloys—A review. Int. Endod. J. 2018, 51, 1088–1103. [Google Scholar] [CrossRef] [Green Version]
- Hieawy, A.; Haapasalo, M.; Zhou, H.; Wang, Z.J.; Shen, Y. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J. Endod. 2015, 41, 1134–1138. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.M.; Wang, Z.; Campbell, L.; Zheng, Y.F.; Haapasalo, M. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments. J. Endod. 2013, 39, 919–923. [Google Scholar] [CrossRef]
- Elnaghy, A.M.; Elsaka, S.E. Mechanical properties of ProTaper Gold nickel-titanium rotary instruments. Int. Endod. J. 2016, 49, 1073–1078. [Google Scholar] [CrossRef]
- Martins, J.N.R.; Silva, E.J.N.L.; Marques, D.; Belladonna, F.; Simões-Carvalho, M.; Camacho, E.; Braz Fernandes, F.M.; Versiani, M.A. Comparison of design, metallurgy, mechanical performance ans shaping ability of replica-like and counterfeit instruments of the ProTaper Next system. Int. Endod. J. 2021, 54, 780–792. [Google Scholar] [CrossRef]
- Hunter, A.; Brewer, J.D. Designing multimethod research. In The Oxford Handbook of Multimethod and Mixed Methods Research Inquiry; Hesse-Biber, S., Johnson, R.B., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- ASTM International. ASTM:F2004−17—Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis; ASTM International: West Conshohocken, PA, USA, 2004; pp. 1–5. [Google Scholar]
- De-Deus, G.; Silva, E.J.N.L.; Vieira, V.T.L.; Belladonna, F.G.; Elias, C.N.; Plotino, G.; Grande, N.M. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. J. Endod. 2017, 43, 462–466. [Google Scholar] [CrossRef]
- ISO. ISO3630-3631:2008—Dentistry—Root Canal Instruments—Part 1: General Requirements and Test Methods; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- EdgeEndo. EdgeTaper Platinum™ Heat Treated Fire-Wire™—Directions for Use; EdgeEndo: Albuquerque, NM, USA, 2019; pp. 1–3. [Google Scholar]
- Plotino, G.; Grande, N.M.; Mercade Bellido, M.; Testarelli, L.; Gambarini, G. Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper Universal rotary files. J. Endod. 2017, 43, 200–202. [Google Scholar] [CrossRef]
- Miyai, K.; Ebihara, A.; Hayashi, Y.; Doi, H.; Suda, H.; Yoneyama, T. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments. Int. Endod. J. 2006, 39, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Duke, F.; Shen, Y.; Zhou, H.; Ruse, N.D.; Wang, Z.J.; Hieawy, A.; Haapasalo, M. Cyclic fatigue of ProFile Vortex and Vortex Blue nickel-titanium files in single and double curvatures. J. Endod. 2015, 41, 1686–1690. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Testarelli, L.; Gambarini, G.; Castagnola, R.; Rossetti, A.; Özyürek, T.; Cordaro, M.; Fortunato, L. Cyclic fatigue of Reciproc and Reciproc Blue nickel-titanium reciprocating files at different environmental temperatures. J. Endod. 2018, 44, 1549–1552. [Google Scholar] [CrossRef]
- Topçuoğlu, H.S.; Topçuoğlu, G. Cyclic fatigue resistance of Reciproc Blue and Reciproc files in an S-shaped canal. J. Endod. 2017, 43, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Kaval, M.E.; Çapar, I.D.; Ertas, H. Evaluation of the cyclic fatigue and torsional resistance of novel nickel-titanium rotary files with various alloy properties. J. Endod. 2016, 42, 1840–1843. [Google Scholar] [CrossRef] [PubMed]
- EdgeEndo website. The Amazing Strength of EdgeTaper—Cyclic Fatigue Testing—Average Time to Failure in Seconds. Available online: https://web.edgeendo.com/edgetaper-and-edgetaper-platinum/ (accessed on 1 July 2021).
- Anderson, M.E.; Price, J.W.; Parashos, P. Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J. Endod. 2007, 33, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- McSpadden, J.T. Mastering instrument designs. In Mastering Endodontics Instrumentation; McSpadden, J.T., Ed.; Cloudland Institute: Chattanooga, TN, USA, 2007; pp. 37–97. [Google Scholar]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in rotary nickel-titanium files after clinical use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Elnaghy, A.M.; Elsaka, S.E. Laboratory comparison of the mechanical properties of TRUShape with several nickel-titanium rotary instruments. Int. Endod. J. 2017, 50, 805–812. [Google Scholar] [CrossRef]
- Park, S.Y.; Cheung, G.S.; Yum, J.; Hur, B.; Park, J.K.; Kim, H.C. Dynamic torsional resistance of nickel-titanium rotary instruments. J. Endod. 2010, 36, 1200–1204. [Google Scholar] [CrossRef]
- Xu, X.; Eng, M.; Zheng, Y.; Eng, D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J. Endod. 2006, 32, 372–375. [Google Scholar] [CrossRef]
- Alqedairi, A.; Alfawaz, H.; Abualjadayel, B.; Alanazi, M.; Alkhalifah, A.; Jamleh, A. Torsional resistance of three ProTaper rotary systems. BMC Oral Health 2019, 19, 124. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.; Shen, Y.; Zhou, H.M.; Haapasalo, M. Effect of fatigue on torsional failure of nickel-titanium controlled memory instruments. J. Endod. 2014, 40, 562–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.S.; Viana, A.C.; Buono, V.T.; Peters, O.A.; Bahia, M.G. Behavior of nickel-titanium instruments manufactured with different thermal treatments. J. Endod. 2015, 41, 67–71. [Google Scholar] [CrossRef]
- Bahia, M.G.; Dias, R.F.; Buono, V.T. The influence of high amplitude cyclic straining on the behaviour of superelastic NiTi. Int. J. Fatigue 2006, 28, 1087–1091. [Google Scholar]
- Ninan, E.; Berzins, D.W. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments. J. Endod. 2013, 39, 101–104. [Google Scholar] [CrossRef]
- Gao, Y.; Gutmann, J.L.; Wilkinson, K.; Maxwell, R.; Ammon, D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J. Endod. 2012, 38, 398–401. [Google Scholar] [CrossRef]
- Pereira, E.S.; Gomes, R.O.; Leroy, A.M.; Singh, R.; Peters, O.A.; Bahia, M.G.; Buono, V. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dent. Mater. 2013, 29, e318–e324. [Google Scholar] [CrossRef]
- Dentsply. ProTaper Gold Rotary Files. 2014. Available online: https://www.dentsply.com/content/dam/dentsply/pim/manufacturer/Endodontics/Glide_Path__Shaping/Rotary__Reciprocating_Files/Shaping/ProTaper_Gold_Rotary_Files/ProTaper-Gold-Brochure-p7btcwy-en-1502.pdf (accessed on 22 December 2021).
- Martins, J.N.R.; Silva, E.; Marques, D.; Pereira, M.R.; Ginjeira, A.; Silva, R.J.C.; Fernandes, F.M.B.; Versiani, M.A. Mechanical performance and metallurgical features of ProTaper Universal and 6 replicalike systems. J. Endod. 2020, 46, 1884–1893. [Google Scholar] [CrossRef]
- Tokita, D.; Ebihara, A.; Miyara, K.; Okiji, T. Dynamic torsional and cyclic fracture behavior of ProFile Rotary instruments at continuous or reciprocating rotation as visualized with high-speed digital video imaging. J. Endod. 2017, 43, 1337–1342. [Google Scholar] [CrossRef]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Peters, O.A.; Arias, A.; Choi, A. Mechanical properties of a novel nickel-titanium root canal instrument: Stationary and dynamic tests. J. Endod. 2020, 46, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Martins, J.N.R.; Lima, C.O.; Vieira, V.T.L.; Fernandes, F.M.B.; De-Deus, G.; Versiani, M.A. Mechanical tests, metallurgical characterization and shaping ability of NiTi rotary instruments: A multimethod research. J. Endod. 2020, 46, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- ASTM International. ASTM:F2516-07—Standard Test Methods for Tension Testing of Nickel-Titanium Superelastic Materials; ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–3. [Google Scholar]
System | Corresponding NiTi Metal Alloy | Manufacturer Specifications | Identification (Color Coding) | Lot |
---|---|---|---|---|
ProTaper Gold | Thermo-treated | Dentsply (Ballaigues, Switzerland) | (A) | 1523909 |
Premium Taper Gold | Thermo-treated | Waldent (City not stated, China) | (A) | 201808 |
Go-Taper Flex | Thermo-treated | Access (Shenzhen, China) | (B) | 17110103 |
EdgeTaper Platinum | Thermo-treated | EdgeEndo (Johnson City, TN, USA) | (A) | 070717008 |
Super Files Blue | Thermo-treated | Flydent (Shenzhen, China) | (A) | Not available |
ProTaper Universal | Conventional | Dentsply (Ballaigues, Switzerland) | (A) | 1032529 |
NiTi Instrument | n | Number of Blades 1 | Helical Angle (°) 1 | Measuring Lines Position (in mm) 2 | ||
---|---|---|---|---|---|---|
18 mm | 20 mm | 22 mm | ||||
ProTaper Gold F1 | 6 | 12 | 25.0 [24.0–25.3] | 18.01 [17.97–18.08] | 20.02 [19.98–20.11] | 21.96 [21.92–22.01] |
Premium Taper Gold F1 | 6 | 15 | 29.5 [28.8–30.3] | 18.15 [18.12–18.27] | 20.23 [20.09–20.37] | 22.18 [22.09–22.55] |
Go-Taper Flex B1 | 6 | 12 | 24.0 [23.8–25.3] | 18.05 [17.89–18.23] | 20.27 [20.03–20.36] | 22.25 [21.89–22.34] |
EdgeTaper Platinum F1 | 6 | 12 | 25.0 [23.8–25.0] | 18.22 [18.05–18.41] | 20.35 [20.23–20.52] | 22.16 [21.93–22.35] |
Super Files Blue F1 | 6 | 12 | 25.5 [23.8–26.0] | 18.21 [18.12–18.37] | 20.15 [19.96–20.26] | 22.34 [22.17–22.45] |
ProTaper Universal F1 | 6 | 12 | 25.5 [24.8–26.0] | 18.06 [18.01–18.17] | 19.97 [19.92–20.07] | 22.06 [21.99–22.16] |
NiTi Instrument | Cyclic Fatigue | Torsional Resistance | Bending Resistance | Microhardness | ||
---|---|---|---|---|---|---|
Time to Fracture (s) | Fragment Length (mm) | Maximum Torque (N·cm) | Angle of Rotation (°) | Maximum Load (gf) | Hardness (HVN) | |
ProTaper Gold F1 | 101.5 [81.5–141.8] | 7.4 [6.8–7.9] | 1.30 [1.23–1.40] | 478 [462–490] | 269.2 [249.9–274.8] | 369.0 [351.2–402.7] |
Premium Taper Gold F1 | 186.0 [131.8–238.8] | 7.8 [7.5–7.9] | 1.05 [1.00–1.10] | 702 [643–803] | 103.5 [99.70–107.7] | 237.4 [220.9–245.7] |
Go-Taper Flex B1 | 128.5 [107.5–148.8] | 7.8 [7.3–8.2] | 1.10 [0.93–1.20] | 319 [298–361] | 260.6 [253.4–279.4] | 410.5 [401.5–427.8] |
EdgeTaper Platinum F1 | 125.0 [113.3–136.3] | 7.2 [6.9–7.7] | 1.30 [0.95–1.30] | 535 [519–669] | 158.3 [155.1–164.7] | 332.6 [320.6–376.4] |
Super Files Blue F1 | 319.0 [283.5–376.3] | 6.6 [5.8–7.7] | 1.45 [1.40–1.50] | 393 [342–449] | 270.7 [263.7–292.9] | 349.8 [334.7–378.0] |
ProTaper Universal F1 | 43.1 [37.0–50.5] | 7.8 [7.7–7.9] | 1.22 [1.18–1.31] | 356 [306–381] | 397.1 [386.9–408.3] | 408.3 [387.6–415.9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, J.N.R.; Silva, E.J.N.L.; Marques, D.; Pereira, M.R.; Vieira, V.T.L.; Arantes-Oliveira, S.; Martins, R.F.; Braz Fernandes, F.; Versiani, M. Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems. Materials 2022, 15, 1009. https://doi.org/10.3390/ma15031009
Martins JNR, Silva EJNL, Marques D, Pereira MR, Vieira VTL, Arantes-Oliveira S, Martins RF, Braz Fernandes F, Versiani M. Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems. Materials. 2022; 15(3):1009. https://doi.org/10.3390/ma15031009
Chicago/Turabian StyleMartins, Jorge N. R., Emmanuel J. N. L. Silva, Duarte Marques, Mário Rito Pereira, Victor T. L. Vieira, Sofia Arantes-Oliveira, Rui F. Martins, Francisco Braz Fernandes, and Marco Versiani. 2022. "Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems" Materials 15, no. 3: 1009. https://doi.org/10.3390/ma15031009
APA StyleMartins, J. N. R., Silva, E. J. N. L., Marques, D., Pereira, M. R., Vieira, V. T. L., Arantes-Oliveira, S., Martins, R. F., Braz Fernandes, F., & Versiani, M. (2022). Design, Metallurgical Features, and Mechanical Behaviour of NiTi Endodontic Instruments from Five Different Heat-Treated Rotary Systems. Materials, 15(3), 1009. https://doi.org/10.3390/ma15031009