Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings
Abstract
:1. Introduction
2. Methodology
- Setup 1 (continuous heating): Thermal behaviour analysis of the three slabs when the hot water system was working (turned on) for 5 h and then turned off;
- Setup 2 (intermittent heating): Working period was evaluated by the accumulated hours with the hot water system working (turned on) while subjected to a trigger (on/off) with a setpoint range between 26 and 29 °C.
3. Experimental Setup
3.1. Materials Characterization
3.2. Setup 1: Continuous Heating
3.3. Setup 2: Intermittent Heating
4. Thermal Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soares, N.; Bastos, J.; Pereira, L.D.; Soares, A.; Amaral, A.R.; Asadi, E.; Rodrigues, E.; Lamas, F.B.; Monteiro, H.; Lopes, M.A.R.; et al. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860. [Google Scholar] [CrossRef]
- EPBD Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the Energy Performance of Buildings. Off. J. Eur. Communities 2002, 4, 65–71.
- EPBD Directive 2010/31/EC of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Off. J. Eur. Communities 2010, 153, 13–35.
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Off. J. Eur. Union 2012, 315, 1–56.
- EPBD Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/Eu on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. Off. J. Eur. Communities Union 2018, 19, 75–91.
- Amasyali, K.; El-Gohary, N. Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renew. Sustain. Energy Rev. 2021, 142, 110714. [Google Scholar] [CrossRef]
- Rhee, K.-N.; Kim, K.W. A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Build. Environ. 2015, 91, 166–190. [Google Scholar] [CrossRef]
- Rhee, K.-N.; Olesen, B.W.; Kim, K.W. Ten questions about radiant heating and cooling systems. Build. Environ. 2017, 112, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Larwa, B.; Cesari, S.; Bottarelli, M. Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy 2021, 225, 120245. [Google Scholar] [CrossRef]
- Zhou, H.; Lin, B.; Qi, J.; Zheng, L.; Zhang, Z. Analysis of correlation between actual heating energy consumption and building physics, heating system, and room position using data mining approach. Energy Build. 2018, 166, 73–82. [Google Scholar] [CrossRef]
- Werner-Juszczuk, A.J. The influence of the thickness of an aluminium radiant sheet on the performance of the lightweight floor heating. J. Build. Eng. 2021, 44, 102896. [Google Scholar] [CrossRef]
- Villarino, J.I.; Villarino, A.; Fernandez, F. Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor. Appl. Energy 2017, 190, 1020–1028. [Google Scholar] [CrossRef]
- Martinopoulos, G.; Papakostas, K.T.; Papadopoulos, A.M. A comparative review of heating systems in EU countries, based on efficiency and fuel cost. Renew. Sustain. Energy Rev. 2018, 90, 687–699. [Google Scholar] [CrossRef]
- Sebarchievici, C.; Dan, D.; Sarbu, I. Performance Assessment of a Ground-coupled Heat Pump for an Office Room Heating using Radiator or Radiant Floor Heating Systems. Procedia Eng. 2015, 118, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, C.; Sun, X.; Gao, F.; Feng, W.; Zillante, G. Heating energy saving potential from building envelope design and operation optimization in residential buildings: A case study in northern China. J. Clean. Prod. 2018, 174, 413–423. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.-H.; Jiang, Y. Dynamic performance of water-based radiant floors during start-up and high-intensity solar radiation. Sol. Energy 2014, 101, 232–244. [Google Scholar] [CrossRef]
- Yu, G.; Yao, Y. The Experimental Research on the Heating and Cooling Performance of Light Floor Radiant Panels. Procedia Eng. 2015, 121, 1349–1355. [Google Scholar] [CrossRef]
- Soares, N.; Santos, P.; Gervásio, H.; Costa, J.; da Silva, L.S. Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review. Renew. Sustain. Energy Rev. 2017, 78, 194–209. [Google Scholar] [CrossRef]
- Marin, P.; Saffari, M.; de Gracia, A.; Zhu, X.; Farid, M.; Cabeza, L.F.; Ushak, S. Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy Build. 2016, 129, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Roque, E.; Vicente, R.; Almeida, R.M. Opportunities of Light Steel Framing towards thermal comfort in southern European climates: Long-term monitoring and comparison with the heavyweight construction. Build. Environ. 2021, 200, 107937. [Google Scholar] [CrossRef]
- Adilkhanova, I.; Memon, S.A.; Kim, J.; Sheriyev, A. A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy 2021, 217, 119390. [Google Scholar] [CrossRef]
- Devaux, P.; Farid, M. Benefits of PCM underfloor heating with PCM wallboards for space heating in winter. Appl. Energy 2017, 191, 593–602. [Google Scholar] [CrossRef]
- Sattari, S.; Farhanieh, B. A parametric study on radiant floor heating system performance. Renew. Energy 2006, 31, 1617–1626. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, X. Thermal analysis of a double layer phase change material floor. Appl. Therm. Eng. 2011, 31, 1576–1581. [Google Scholar] [CrossRef]
- Zhou, G.; He, J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes. Appl. Energy 2015, 138, 648–660. [Google Scholar] [CrossRef]
- Feng, J.; Schiavon, S.; Bauman, F. New method for the design of radiant floor cooling systems with solar radiation. Energy Build. 2016, 125, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhang, Y.; Ling, Z.; Fang, X.; Zhang, Z. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs. Energy Build. 2020, 211, 109806. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S. Determination of Optimum Hot-Water Temperatures for PCM Radiant Floor-Heating Systems Based on the Wet Construction Method. Sustainability 2018, 10, 4004. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Gao, J.; Tong, H.; Yin, S.; Tang, X.; Jiang, X. Model establishment and operation optimization of the casing PCM radiant floor heating system. Energy 2020, 193, 116814. [Google Scholar] [CrossRef]
- González, B.; Prieto, M. Radiant heating floors with PCM bands for thermal energy storage: A numerical analysis. Int. J. Therm. Sci. 2021, 162, 106803. [Google Scholar] [CrossRef]
- Lu, S.; Xu, B.; Tang, X. Experimental study on double pipe PCM floor heating system under different operation strategies. Renew. Energy 2019, 145, 1280–1291. [Google Scholar] [CrossRef]
- Yun, B.Y.; Yang, S.; Cho, H.M.; Chang, S.J.; Kim, S. Design and analysis of phase change material based floor heating system for thermal energy storage. Environ. Res. 2019, 173, 480–488. [Google Scholar] [CrossRef]
- de Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Xie, B.; Zhang, R.; Xu, Z.; Xia, Y. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system. Appl. Energy 2015, 144, 10–18. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S. Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water. Energies 2019, 12, 828. [Google Scholar] [CrossRef] [Green Version]
- Plytaria, M.T.; Tzivanidis, C.; Bellos, E.; Antonopoulos, K.A. Energetic investigation of solar assisted heat pump underfloor heating systems with and without phase change materials. Energy Convers. Manag. 2018, 173, 626–639. [Google Scholar] [CrossRef]
- Plytaria, M.T.; Tzivanidis, C.; Bellos, E.; Antonopoulos, K.A. Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials. Therm. Sci. Eng. Prog. 2019, 10, 59–72. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Chamkha, A.J.; Wen, D. Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 2019, 138, 738–749. [Google Scholar] [CrossRef]
- Sadeghi, H.M.; Babayan, M.; Chamkha, A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int. J. Heat Mass Transf. 2020, 147, 118970. [Google Scholar] [CrossRef]
- Chamkha, A.; Veismoradi, A.; Ghalambaz, M.; Talebizadehsardari, P. Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam. Appl. Therm. Eng. 2020, 177, 115493. [Google Scholar] [CrossRef]
- Treviño, R.B.; Cuadrado, J.; Canales, J.; Rojí, E. Lime mud waste from the paper industry as a partial replacement of cement in mortars used on radiant floor heating systems. J. Build. Eng. 2021, 41, 102408. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Alexandre, J.; Marvila, M.; Xavier, G.; Monteiro, S.N.; Pedroti, L.G. Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar. J. Clean. Prod. 2020, 249, 119336. [Google Scholar] [CrossRef]
- Ren, J.; Liu, J.; Zhou, S.; Kim, M.K.; Song, S. Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building. Energy 2021, 239, 122410. [Google Scholar] [CrossRef]
- Song, D.; Kim, T.; Song, S.; Hwang, S.; Leigh, S.-B. Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation. Appl. Therm. Eng. 2008, 28, 1299–1311. [Google Scholar] [CrossRef]
- Jin, W.; Jia, L.; Wang, Q.; Yu, Z. Study on Condensation Features of Radiant Cooling Ceiling. Procedia Eng. 2015, 121, 1682–1688. [Google Scholar] [CrossRef]
- Wu, S.P.; Wang, P.; Li, B.; Pang, L.; Guo, F. Study on Mechanical and Thermal Properties of Graphite Modified Cement Concrete. Key Eng. Mater. 2014, 599, 84–88. [Google Scholar] [CrossRef]
- Ding, P.; Li, Y.; Long, E.; Zhang, Y.; Liu, Q. Study on heating capacity and heat loss of capillary radiant floor heating systems. Appl. Therm. Eng. 2020, 165, 114618. [Google Scholar] [CrossRef]
- Lee, S.; Joo, J.; Kim, S. Life Cycle Energy and Cost Analysis of Thin Flooring Panels with Enhanced Thermal Efficiency. J. Asian Arch. Build. Eng. 2015, 14, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Cholewa, T.; Siuta-Olcha, A.; Dudzińska, M. The analysis of thermal comfort in a room with radiant floor with different finishing materials of the floor surface. In Proceedings of the Indoor Air 2014—13th International Conference on Indoor Air Quality and Climate, Hong Kong, China, 7–12 July 2014. [Google Scholar]
- BS EN 12664:2001; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Dry and Moist Products of Medium and Low Thermal Resistance. BSI: London, UK, 2001.
- ISO 8302; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties. Guarded Hot Plate Apparatus International Organization for Standardization (ISO): Geneva, Switzerland, 1991.
- EN1015-11; Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar. European Committee for Standardization: Brussels, Belgium, 2007.
- Sena-Cruz, J.M.; Barros, J.A.O.; Azevedo, Á.F.M.; Ventura-Gouveia, A. Numerical Simulation of the Nonlinear Behavior of RC Beams Strengthened with NSM CFRP Strips. In Proceedings of the CMNE/CILAMCE Congress; Associação Portuguesa de Mecânica Teórica, Aplicada e Computacional (APMTAC), Universidade do Minho, Porto, Portugal, 13–15 June 2007. [Google Scholar]
- Ventura-Gouveia, A.; Barros, J.A.O.; Azevedo, Á.F.M. Thermo-mechanical model for the material nonlinear analysis of cement based materials. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-9, Berkeley, CA, USA, 28 May–1 June 2016; Saouma, V., Bolander, J., Landis, E., Eds.; 2016. [Google Scholar]
- Ventura-Gouveia, A. Constitutive Models for the Material Nonlinear Analysis of Concrete Structures Including Time-Dependent Effects. Ph.D. Thesis, University of Minho, Braga, Portugal, 2011. [Google Scholar]
Mortar | Density (kg m−3) | Thermal Conductivity (Wm−1 °C−1) | Strength (MPa) | |
---|---|---|---|---|
Flexural | Compressive | |||
M_01 | 2130 (20.01) | 0.817 (0.077) | 4.42 (0.15) | 16.09 (1.63) |
M_02 | 2110 (16.40) | 0.805 (0.073) | 6.05 (0.25) | 27.53 (1.22) |
M_03 | 2170 (17.10) | 0.537 (0.043) | 5.54 (0.33) | 22.77 (0.36) |
Material | Density (kg m−3) | Thermal Conductivity (Wm−1 °C−1) | Specific Heat (J kg−1 °C−1) |
---|---|---|---|
Mortar | 2170 | 0.537 | 800 |
Insulation | 70.5 | 0.037 | 1000 |
Concrete | 2500 | 2.0 | 1000 |
Material | Density (kg m−3) | Thermal Conductivity (Wm−1 °C−1) | Specific Heat (J kg−1 °C−1) | Tmax (°C) | Tsurf (°C) |
---|---|---|---|---|---|
Ceramic | 2300 | 1.300 | 840 | 29.76 | 26.11 |
Linoleum | 1390 | 0.170 | 900 | 27.54 | 24.75 |
Wood | 500 | 0.130 | 1600 | 26.88 | 24.32 |
Cork | 400 | 0.065 | 1500 | 24.56 | 22.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R.M.S.F.; Vicente, R.d.S.; Ventura-Gouveia, A.; Figueiredo, A.; Rebelo, F.; Roque, E.; Ferreira, V.M. Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings. Materials 2022, 15, 1015. https://doi.org/10.3390/ma15031015
Almeida RMSF, Vicente RdS, Ventura-Gouveia A, Figueiredo A, Rebelo F, Roque E, Ferreira VM. Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings. Materials. 2022; 15(3):1015. https://doi.org/10.3390/ma15031015
Chicago/Turabian StyleAlmeida, Ricardo M. S. F., Romeu da Silva Vicente, António Ventura-Gouveia, António Figueiredo, Filipe Rebelo, Eduardo Roque, and Victor M. Ferreira. 2022. "Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings" Materials 15, no. 3: 1015. https://doi.org/10.3390/ma15031015
APA StyleAlmeida, R. M. S. F., Vicente, R. d. S., Ventura-Gouveia, A., Figueiredo, A., Rebelo, F., Roque, E., & Ferreira, V. M. (2022). Experimental and Numerical Simulation of a Radiant Floor System: The Impact of Different Screed Mortars and Floor Finishings. Materials, 15(3), 1015. https://doi.org/10.3390/ma15031015