Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis Protocol and Experimental Characterization
2.2. Prediction of the Radiation Shielding Characteristics Using Monte Carlo Simulation
3. Results and Discussion
3.1. Phase Composition
3.1.1. Effect of the Second Thermal Cycle
3.1.2. Influence of AgNO3 Addition
3.2. Radiation Shielding Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmerman, G.O. Superconductivity: The promise and reality. Int. J. Mod. Phys. B 2003, 17, 3698–3701. [Google Scholar] [CrossRef]
- Bromberg, L.; Tekula, M.; El-Guebaly, L.A.; Miller, R.; ARIES Team. Options for the use of high temperature superconductor in tokamak fusion reactor designs. Fusion Eng. Des. 2001, 54, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Şahin, S.; Şahin, H.M.; Şahiner, H.; Tunç, G. Study on the fusion reactor performance with different materials and nuclear waste actinides. Int. J. Energy Res. 2021, 45, 11759–11774. [Google Scholar] [CrossRef]
- Azzouz, F.B.; M’chirgui, A.; Yangui, B.; Boulesteix, C.; Ben Salem, M. Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi, Pb)-2223 superconductors. Phys. C Supercond. Appl. 2001, 356, 83–96. [Google Scholar] [CrossRef]
- Annabi, M.; M’chirgui, A.; Ben Azzouz, F.; Zouaoui, M.; Ben Salem, M. Addition of nanometer Al2O3 during the final processing of (Bi, Pb)-2223 superconductors. Phys. C Supercond. Appl. 2004, 405, 25–33. [Google Scholar] [CrossRef]
- Abou-Aly, A.I.; Abdel Gawad, M.M.H.; Awad, R.; G.-Eldeen, I. Improving the physical properties of (Bi, Pb)-2223 phase by SnO2 nano-particles addition. J. Supercond. Nov. Magn. 2011, 24, 2077. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, B.; Zhang, W.; Ma, X.; Liu, J.; Liu, X.; Feng, J.; Wang, Q.; Li, C.; Zhang, P. Influences of Precursors Phase Com-position on the Phase Evolution Dynamics of Bi-2223 Superconducting Tapes. IEEE Trans. Appl. Supercond. 2021, 31, 1–6. [Google Scholar]
- Sinuhaji, P.; Yuliana, Z. The Effect of Sintering Time on Superconductor Wire Bi-Pb-Sr-Ca-Cu-O with Dopant Te Sheeted Ag Using Powder In-Tube Method. J. Phys. Conf. Ser. 2018, 1120, 012027. [Google Scholar] [CrossRef]
- Ben Salem, M.K.; Slimani, Y.; Hannachi, E.; Ben Azzouz, F.; Ben Salem, M. Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe. Cryogenics 2018, 89, 53–57. [Google Scholar] [CrossRef]
- Ozturk, O.; Cetinkara, H.A.; Asikuzun, E.; Akdogan, M.; Yilmazlar, M.; Terzioglu, C. Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors. J. Mater. Sci. Mater. Electron. 2011, 22, 1501–1508. [Google Scholar] [CrossRef]
- Loudhaief, N.; Labiadh, H.; Hannachi, E.; Zouaoui, M.; Ben Salem, M. Synthesis of CdS nanoparticles by hydrothermal method and their effects on the electrical properties of Bi-based superconductors. J. Supercond. Nov. Magn. 2018, 31, 2305–2312. [Google Scholar] [CrossRef]
- Baalamurugan, J.; Ganesh Kumar, V.; Chandrasekaran, S.; Balasundar, S.; Venkatraman, B.; Padmapriya, R.; Raja, V.K.B. Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite. Compos. B Eng. 2021, 216, 108885. [Google Scholar]
- Khalaf, M.A.; Cheah, C.B.; Ramli, M.; Ahmed, N.M.; Al-Shwaiter, A. Effect of nano zinc oxide and silica on mechanical, fluid transport and radiation attenuation properties of steel furnace slag heavyweight concrete. Constr. Build. Mater. 2021, 274, 121785. [Google Scholar] [CrossRef]
- Tekin, H.O.; Sayyed, M.I.; Manici, T.; Altunsoy, E.E. Photon shielding characterizations of bismuth modified borate silicate tellurite glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 2018, 211, 9–16. [Google Scholar] [CrossRef]
- Rammah, Y.S.; Mahmoud, K.A.; Mohammed, F.Q.; Sayyed, M.I.; Tashlykov, O.L.; El-Mallawany, R. Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code. Nucl. Eng. Technol. 2021, 53, 2661–2668. [Google Scholar] [CrossRef]
- Rammah, Y.S.; Abouhaswa, A.S.; Sayyed, M.I.; Tekin, H.O.; El-Mallawany, R. Structural, UV and shielding properties of ZBPC glasses. J. Non-Cryst. Solids 2019, 509, 99–105. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Kumar, A.; Jecong, J.F.M.; Al-Harbi, N.; Hannachi, E.; Sayyed, M.I. Li2O-K2O-B2O3-PbO glass system: Optical and gamma-ray shielding investigations. Optik 2021, 247, 167792. [Google Scholar] [CrossRef]
- Singh, V.P.; Medhat, M.E.; Badiger, N.M.; Saliqur Rahman, A.Z.M. Radiation shielding effectiveness of newly developed superconductors. Radiat. Phys. Chem. 2015, 106, 175–183. [Google Scholar] [CrossRef]
- Hannachi, E.; Slimani, Y.; Ben Salem, M.K.; Hamrita, A.; Al-Otaibi, A.L.; Almessiere, M.A.; Ben Salem, M.; Ben Azzouz, F. Fluctuation induced conductivity studies in YBa2 Cu3 Oy compound embedded by superconducting nano-particles Y-deficient YBa2 Cu3 Oy: Effect of silver inclusion. Indian J. Phys. 2016, 90, 1009–1018. [Google Scholar] [CrossRef]
- Singh, J.P.; Leu, H.J.; Poeppel, R.B.; Van Voorhees, E.; Goudey, G.T.; Winsley, K.; Shi, D. Effect of silver and silver oxide additions on the mechanical and superconducting properties of YBa2Cu3O7−δ superconductors. J. Appl. Phys. 1989, 66, 3154–3159. [Google Scholar] [CrossRef]
- Anand, S.; Srivastava, O.N. Effect of AgNO3 additive/doping on microstructure and superconductivity of the Pb doped Hg: 1223 thin film prepared through spray pyrolysis. J. Phys. Chem. Solids 2002, 63, 1647–1653. [Google Scholar] [CrossRef]
- Abdeen, W.; Mohammed, N.H.; Awad, R.; Mahmoud, S.A.; Hasebbo, M. Influence of Nano-Ag Addition on the Mechanical Properties of (Cu0.5Tl0.5)-1223 Superconducting Phase. J. Supercond. Nov. Magn. 2013, 26, 3235–3245. [Google Scholar] [CrossRef]
- Mawassi, R.; Marhaba, S.; Roumié, M.; Awad, R.; Korek, M.; Hassan, I. Improvement of superconducting parameters of Bi1.8Pb0.4Sr2Ca2Cu3O10+δ added with nano-Ag. J. Supercond. Nov. Magn. 2014, 27, 1131–1142. [Google Scholar] [CrossRef]
- Sýkorová, D.; Jakeš, V.; Smrčková, O. Bi-based superconductors with nanosized silver dopant. Phys. Status Solidi C 2006, 3, 3027–3030. [Google Scholar] [CrossRef]
- Romano, P.K.; Forget, B. The Open MC Monte Carlo particle transport code. Ann. Nucl. Energy 2013, 51, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Sayyed, M.I.; Hannachi, E.; Mahmoud, K.A.; Slimani, Y. Synthesis of different (RE)BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation. Mater. Chem. Phys. 2022, 276, 125412. [Google Scholar] [CrossRef]
- El-Soad, A.M.A.; Sayyed, M.I.; Mahmoud, K.A.; Şakar, E.; Kovaleva, E.G. Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 2019, 154, 108882. [Google Scholar] [CrossRef]
- Pakdil, M.; Bekiroglu, E.; Oz, M.; Saritekin, N.K.; Yildirim, G. Role of preparation conditions of Bi-2223 ceramic materials and optimization of Bi-2223 phase in bulk materials with experimental and statistical approaches. J. Alloys Compd. 2016, 673, 205–214. [Google Scholar] [CrossRef]
- Hannachi, E.; Almessiere, M.A.; Slimani, Y.; Baykal, A.; Azzouz, F.B. AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloys Compd. 2020, 812, 152150. [Google Scholar] [CrossRef]
- Kaky, K.M.; Sayyed, M.I.; Ati, A.A.; Mhareb, M.H.; Mahmoud, K.A.; Baki, S.O.; Mahdi, M.A. Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. J. Non-Cryst. Solids 2020, 546, 120272. [Google Scholar] [CrossRef]
Ceramic Code | Sintering Conditions | Density (g/cm3) | |||
---|---|---|---|---|---|
Calcination (930 °C, 24 h) | First Sintering Step (835 °C, 140 h) | Second Sintering Step (850 °C, 156 h) | AgNO3 Addition | ||
C0 | × | × | - | - | 3.25 |
C1 | × | × | × | - | 6.25 |
C2 | × | × | × | × | 6.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannachi, E.; Mahmoud, K.A.; Almuqrin, A.H.; Sayyed, M.I.; Slimani, Y. Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion. Materials 2022, 15, 1034. https://doi.org/10.3390/ma15031034
Hannachi E, Mahmoud KA, Almuqrin AH, Sayyed MI, Slimani Y. Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion. Materials. 2022; 15(3):1034. https://doi.org/10.3390/ma15031034
Chicago/Turabian StyleHannachi, Essia, K. A. Mahmoud, Aljawhara H. Almuqrin, M. I. Sayyed, and Yassine Slimani. 2022. "Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion" Materials 15, no. 3: 1034. https://doi.org/10.3390/ma15031034
APA StyleHannachi, E., Mahmoud, K. A., Almuqrin, A. H., Sayyed, M. I., & Slimani, Y. (2022). Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion. Materials, 15(3), 1034. https://doi.org/10.3390/ma15031034