Neighbor-Affected Orientation Rotation in the Grain Boundary Region
Abstract
:1. Introduction
2. Calculation Method
3. Results
3.1. Comparison of Orientation Rotation between Calculation and Experiment
3.2. Calculated Orientation Rotation at Grain Interior
3.3. Calculated Orientation Rotation at Grain Boundary Region
4. Discussion
4.1. Orientation Rotation at Grain Boundary Region
4.2. Rotation Velocity Field at Grain Boundary Region
4.3. Correlation between Deviation Angle and Rotation Path
5. Conclusions
- (1)
- The rotation velocity field at grain boundary regions is quantitatively described by crystal plasticity calculations. Both the rotation path and rotation rate at grain boundary regions depend sensitively on initial orientation and neighboring orientation.
- (2)
- Deviation angle evolution of initial scattered λ texture relative to ideal λ target orientation at grain boundary regions is sensitive to neighboring orientations. The critical orientation boundary separating convergent and divergent zones and the peak position of orientation zones can be effectively modified by neighboring orientations.
- (3)
- Rotation velocity field and deviation angle distribution dependent on neighboring orientation provide a basis for accurate texture design to control orientation evolution at grain boundary regions during deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Kuo, J.-C.; Tung, S.-H.; Shih, M.-H. Characterization of misorientation gradient of an aluminum bicrystal in simple shear. Mater. Sci. Eng. A 2007, 454-455, 523–527. [Google Scholar] [CrossRef]
- Nave, M.D.; Barnett, M.R. Texture change near grain boundaries and triple points in cold-rolled interstitial-free steel. Mater. Sci. Eng. A 2004, 386, 244–253. [Google Scholar] [CrossRef]
- Randle, V.; Hansen, N.; Jensen, D.J. The deformation behaviour of grain boundary regions in polycrystalline aluminium. Philos. Mag. A 1996, 73, 265–282. [Google Scholar] [CrossRef]
- Sabin, T.J.; Winther, G.; Jensen, D.J. Orientation relationships between recrystallization nuclei at triple junctions and deformed structures. Acta Mater. 2003, 51, 3999–4011. [Google Scholar] [CrossRef]
- Park, M.; Kang, M.S.; Park, G.-W.; Kim, H.C.; Moon, H.-S.; Kim, B.; Jeon, J.B.; Kim, H.; Park, H.-S.; Kwon, S.-H.; et al. Effects of Annealing Treatment on the Anisotropy Behavior of Cold-Rolled High-Manganese Austenite Stainless Steels. Met. Mater. Int. 2021, 27, 3839–3855. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y.; Mabuchi, M. Influence of rolling temperature on static recrystallization behavior of AZ31 magnesium alloy. J. Mater. Sci. 2012, 47, 4561–4567. [Google Scholar] [CrossRef]
- Petryshynets, I.; Kováč, F.; Füzer, J.; Falat, L.; Puchý, V.; Kollár, P. Evolution of Power Losses in Bending Rolled Fully Finished NO Electrical Steel Treated under Unconventional Annealing Conditions. Materials 2019, 12, 2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoecker, A.; Leuning, N.; Hameyer, K.; Wei, X.; Hirt, G.; Korte-Kerzel, S.; Prahl, U.; Kawalla, R. Correlating magnetic properties of ferritic NO electrical steel containing 2.4 m.%Si with hot strip microstructure. J. Magn. Magn. Mater. 2020, 501, 166431. [Google Scholar] [CrossRef]
- Sha, Y.H.; Sun, C.; Zhang, F.; Patel, D.; Chen, X.; Kalidindi, S.R.; Zuo, L. Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater. 2014, 76, 106–117. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, N.; Yang, P.; Mao, W.M. Retaining {100} texture from initial columnar grains in electrical steels. Scr. Mater. 2012, 67, 899–902. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, P.; Mao, W. Formation of cube texture affected by neighboring grains in a transverse-directionally aligned columnar-grained electrical steel. Mater. Lett. 2013, 93, 363–365. [Google Scholar] [CrossRef]
- Raabe, D.; Zhao, Z.; Park, S.-J.; Roters, F. Theory of orientation gradients in plastically strained crystals. Acta Mater. 2002, 50, 421–440. [Google Scholar] [CrossRef]
- Raabe, D.; Zhao, Z.; Mao, W.M. On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction. Acta Mater. 2002, 50, 4379–4394. [Google Scholar] [CrossRef]
- Tsuji, N.; Tsuzaki, K.; Maki, T. Effect of Initial Orientation on the Cold Rolling Behavior of Solidified Columnar Crystals in a 19%Cr Ferritic Stainles Steel. ISIJ Int. 1992, 32, 1319–1328. [Google Scholar] [CrossRef]
- Inagaki, H. Nucleation of a {111} Recrystallized Grain at the Grain Boundary of Cold Rolled Polycrystalline Iron. Trans. Jpn. Inst. Met. 1987, 28, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Zaefferer, S.; Kuo, J.-C.; Zhao, Z.; Winning, M.; Raabe, D. On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater. 2003, 51, 4719–4735. [Google Scholar] [CrossRef]
- Mishra, S.K.; Pant, P.; Narasimhan, K.; Rollett, A.; Samajdar, I. On the widths of orientation gradient zones adjacent to grain boundaries. Scr. Mater. 2009, 61, 273–276. [Google Scholar] [CrossRef]
- Subedi, S.; Pokharel, R.; Rollett, A.D. Orientation gradients in relation to grain boundaries at varying strain level and spatial resolution. Mater. Sci. Eng. A 2015, 638, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.I.; Suzuki, S.; Nowell, M.M. In Situ EBSD Observations of the Evolution in Crystallographic Orientation with Deformation. JOM 2016, 68, 2730–2736. [Google Scholar] [CrossRef]
- Signorelli, J.W.; Roatta, A.; De Vincentis, N.; Schwindt, C.; Avalos, M.; Bolmaro, R.E.; Bozzolo, N. Electron backscatter diffraction study of orientation gradients at the grain boundaries of a polycrystalline steel sheet deformed along different loading paths. J. Appl. Crystallogr. 2017, 50, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- De Vincentis, N.S.; Roatta, A.; Bolmaro, R.E.; Signorelli, J.W. EBSD Analysis of Orientation Gradients Developed near Grain Boundaries. Mater. Res. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, S.; Jain, R.; Gurao, N.P. Microstructural characteristics governing the lattice rotation in Al-Mg alloy using in-situ EBSD. Mater. Charact. 2021, 180, 111405. [Google Scholar] [CrossRef]
- Chen, X.; Sha, Y.H.; Chang, S.T.; Zhang, F.; Zuo, L. Oriented stability and its application in texture control. Philos. Mag. A 2020, 100, 3092–3107. [Google Scholar] [CrossRef]
- Gilormini, P.; Toth, L.S.; Jonas, J.J. An analytic method for the prediction of ODFS with application to the shear of FCC polycrystals. Proc. R. Soc. Lond. A 1990, 430, 489–507. [Google Scholar] [CrossRef]
- Asaro, R.J.; Needleman, A. Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985, 33, 923–953. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1976, 348, 101–127. [Google Scholar] [CrossRef]
- Klusemann, B.; Svendsen, B.; Vehoff, H. Investigation of the deformation behavior of Fe–3%Si sheet metal with large grains via crystal plasticity and finite-element modeling. Comput. Mater. Sci. 2012, 52, 25–32. [Google Scholar] [CrossRef]
- Alipour, A.; Reese, S.; Svendsen, B.; Wulfinghoff, S. A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190581. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—Theory, experiments, and simulations. Acta Mater. 2006, 54, 2181–2194. [Google Scholar] [CrossRef]
- Lim, H.; Lee, M.G.; Kim, J.H.; Adams, B.L.; Wagoner, R.H. Simulation of polycrystal deformation with grain and grain boundary effects. Int. J. Plast. 2011, 27, 1328–1354. [Google Scholar] [CrossRef]
- Livingston, J.D.; Chalmers, B. Multiple slip in bicrystal deformation. Acta Met. 1957, 5, 322–327. [Google Scholar] [CrossRef]
- Shen, Z.; Wagoner, R.H.; Clark, W.A.T. Dislocation and grain boundary interactions in metals. Acta Met. 1988, 36, 3231–3242. [Google Scholar] [CrossRef]
- Pan, H.J.; He, Y.; Zhang, X.D. Interactions between Dislocations and Boundaries during Deformation. Materials 2021, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Sha, Y.; Chen, S.; Zhang, F.; Zuo, L. Neighbor-Affected Orientation Rotation in the Grain Boundary Region. Materials 2022, 15, 1059. https://doi.org/10.3390/ma15031059
Chen X, Sha Y, Chen S, Zhang F, Zuo L. Neighbor-Affected Orientation Rotation in the Grain Boundary Region. Materials. 2022; 15(3):1059. https://doi.org/10.3390/ma15031059
Chicago/Turabian StyleChen, Xi, Yuhui Sha, Sihao Chen, Fang Zhang, and Liang Zuo. 2022. "Neighbor-Affected Orientation Rotation in the Grain Boundary Region" Materials 15, no. 3: 1059. https://doi.org/10.3390/ma15031059
APA StyleChen, X., Sha, Y., Chen, S., Zhang, F., & Zuo, L. (2022). Neighbor-Affected Orientation Rotation in the Grain Boundary Region. Materials, 15(3), 1059. https://doi.org/10.3390/ma15031059