Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Hydrostatic Extrusion
2.3. Static Tensile Test
2.4. Dynamic Tensile Test
2.5. Surface Characteristics
3. Results
3.1. Static Test
3.2. Dynamic Test
- An increase in the Rmd-value 128.5 MPa to 190 MPa at έ = 750 s−1 (15 m·s−1);
- An increase in the Rmd-value 128.5 MPa to 250 MPa at έ = 1250 s−1 (25 m·s−1);
- An increase in the Rmd-value 128.5 MPa to 313 MPa at έ = 1750 s−1 (35 m·s−1).
- An increase in the Rmd-value 191 MPa to 330 MPa at έ = 750 s−1;
- An increase in the Rmd-value 191 MPa to 234 MPa at έ = 1250 s−1.
- An increase in the Rmd-value 327 MPa to 495 MPa at έ = 750 s−1;
- An increase in the Rmd-value 327 MPa to 496 MPa at έ = 1250 s−1;
- An increase in the Rmd-value 327 MPa to 485 MPa at έ = 1750 s−1.
- An increase in the Rmd-value 528 MPa to 720 MPa at έ = 750 s−1;
- An increase in the Rmd-value 528 MPa to 731 MPa at έ = 1250 s−1;
- An increase in the Rmd-value 528 MPa to 757 MPa at έ = 1750 s−1.
3.3. Fracture Morphology of Samples after Dynamic Test
3.4. Analysis of Voids
3.5. Source of the Nucleation of Voids
- Inclusions of about 10 µm in size existed at the bottom of the voids in the Al-7.5Mg sample (Figure 15a); the analysis also revealed the presence of Si, S, Ca and an elevated concentration of C and O. This analysis probably resulted from an inclusion that was formed during casting;
- The elements O and C registered on the spectrogram of the Al-3Mg sample (Figure 15b) were most likely a result of contamination of the fracture surface.
- Inclusions of about 4 µm in size existed at the bottom of the void on the fracture of the Al-1Mg sample (Figure 15c); the presence of Si and C suggests that it was an inclusion from a preliminary alloy.
4. Conclusions
- With an increase in magnesium content in the aluminium alloys tested under static conditions, an increase in the values of UTS and YS was observed. The same alloys strengthened in the HE process (logarithmic strain u = 0.86) showed an increase in YS of 85.6–277% and UTS by 45.7–80.5% in relation to the properties of Al99.5 aluminium. At the same time, the relative elongation value decreased by 85.7–95%;
- The content of 1% magnesium in Al-1Mg aluminium alloy caused a PLC effect called serration above the yield point and a change in the mechanical properties in relation to Al99.5 aluminium;
- For HE-strengthened aluminium alloys, an increase in the strain rate from 750 to 1750 s−1 caused an increase in dynamic UTS Rmd from 1.2 to 1.9 times in relation to static UTS;
- All samples fractured in the ductile fracture mode according to the classic mechanism: nucleation of the voids; growth of voids as a result of attaching new dislocations to them and then coalescence of voids leading to crack propagation;
- An increase in Mg content resulting in the formation of a larger amount of strengthening phase affected a different state of stress during dynamic loading, leading to a change in the orientation of the fracture surface;
- An increase in the content of Mg was associated with an increased number of voids, which number was additionally directly proportional to the strain rate in the dynamic tensile test.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Jeong, H.; Park, S. Effect of extrusion ratios on hardness, microstructure, and crystal texture anisotropy in pure niobium tubes subjected to hydrostatic extrusion. Trans. Nonferr. Met. Soc. China 2021, 31, 1689–1699. [Google Scholar] [CrossRef]
- Garbacz, H.; Topolski, K.; Motyka, M. Hydrostatiic extrusion. In Nanocrystalline Titanium (Micro and Nano Technologies); Garbacz, H., Semenova, I.P., Zherebtsov, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 37–53. [Google Scholar]
- Du, S.; Zan, X.; Li, P.; Luo, L.; Zhu, X.; Wu, Y. Comparison of Hydrostatic Extrusion between Pressure-Load and Displacement-Load Models. Metals 2017, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Siahsarani, A.; Faraji, G. Processing and characterization of AZ91 magnesium alloys via a novel severe plastic deformation method: Hydrostatic cyclic extrusion compression (HCEC). Trans. Nonferr. Met. Soc. China 2021, 31, 1303–1321. [Google Scholar] [CrossRef]
- Skiba, J.; Kosakowska, J.; Kulczyk, M.; Pachla, W.; Przybysz, S.; Smalc-Koziorowska, J.; Przybysz, M. The impact of severe plastic deformations obtained by hydrostatic extrusion on the machinability of ultrafine-grained AA5083 alloy. J. Manuf. Process. 2020, 58, 1232–1240. [Google Scholar] [CrossRef]
- Behera, R.K.; Samal, B.P.; Panigrahi, S.C.; Das, S.R. Optimization of erosion wears of Al–Mg–Si–Cu–SiC composite produced by the PM method. Corros. Rev. 2021, 39, 63–75. [Google Scholar] [CrossRef]
- Abbass, M.K.; Hassan, K.S.; Alwan, A.S. Study of corrosion resistance of aluminum alloy 6061/SiC composites in 3.5% NaCl solution. Int. J. Mater. Mech. Manuf. 2015, 3, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Behera, R.K.; Samal, B.P.; Panigrahi, S.C.; Muduli, K.K. Microstructural and mechanical analysis of sintered powdered aluminium composites. Adv. Mater. Sci. Eng. 2020, 2020, 1893475. [Google Scholar] [CrossRef] [Green Version]
- El-Aziz, K.A.; Saber, D.; Sallam, H.; El-Din, M. Wear and corrosion behavior of Al–Si matrix composite reinforced with alumina. J. Bio. Tribo. Corros. 2015, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Behera, R.K.; Panigrahi, S.C.; Samal, B.P.; Parida, P.K. Mechanical properties and micro-structural study of sintered aluminium metal matrix composites by P/M technique. J. Mod. Manuf. Sys. Technol. 2019, 3, 89–97. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, C.Y.; Park, H.J.; Kim, S.; Kim, E.; Choi, T.; Rhee, K. A study of hydrostatic extrusion as a consolidation process for fabricating ultrafine-grained bulk Al–Mg alloy. J. Mater. Proc. Technol. 2007, 191, 396–399. [Google Scholar] [CrossRef]
- Kim, E.Z.; Ok, S.I.; Lee, Y.S.; Na, K.H. Backward can extrusion of ultra-fine-grained bulk Al–Mg alloy fabricated by cryomilling and hydrostatic extrusion. J. Mater. Proc. Technol. 2008, 201, 163–167. [Google Scholar] [CrossRef]
- Chromincki, W.; Wenner, S.; Marioara, C.D.; Holmestad, R.; Lewandowska, M. Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion –Influence of ageing temperature. Mater. Sci. Eng. A 2016, 669, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Chrominski, W.; Kulczyk, M.; Lewandowska, M.; Kurzydłowski, K.J. Precipitation strengthening of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion. Mater. Sci. Eng. A 2014, 609, 80–87. [Google Scholar] [CrossRef]
- Majchrowicz, K.; Pakieła, Z.; Chrominski, W.; Kulczyk, M. Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion. Mater. Charact. 2018, 135, 104–114. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Awadallah, A. Hydrostatic Extrusion of Metals and Alloys. Available online: https://materialsdata.nist.gov/bitstream/handle/11115/163/Hydrostatic%20Extrusion.pdf?sequence=3&isAllowed=y (accessed on 23 September 2021).
- Inoue, N.; Nishihara, M. Hydrostatic extrusion. In Theory and Applications; Springer Verlag GmbH: Heidelberg, Germany, 1985. [Google Scholar]
- Kulczyk, M.; Przybysz, S.; Skiba, J.; Pachla, W. Severe plastic deformation induced in Al, Al-Si, Ag and Cu by hydrostatic extrusion. Arch. Metall. Mater. 2014, 59, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Pakieła, Z.; Garbacz, H.; Lewandowska, M.; Drużycka-Wiencek, A.; Suś-Ryszkowska, M.; Zieliński, W.; Kurzydłowski, K. Structure and properties of nanomaterials produced by severe plastic deformation. Nukleonika 2006, 51, 19–25. [Google Scholar]
- Pakiela, Z.; Ludwichowska, K.; Ferenc, J.; Kulczyk, M. Mechanical properties and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012120. [Google Scholar] [CrossRef]
- Kurzydlowski, K.J.; Lewandowska, M. Fabrication of nanostructured materials by hydrostatic extrusion: Advantages and limitations. Mater. Sci. Forum 2007, 561–565, 913–916. [Google Scholar] [CrossRef]
- Abdulstaar, M.; Mhaede, M.; Wollmann, M.; Wagner, L. Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surf. Coat. Technol. 2014, 254, 244–251. [Google Scholar] [CrossRef]
- EN ISO 6892-1:2016-09; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organisation for Standardization: Geneva, Switzerland, 2016.
- Ryen, Ø.; Nijs, O.; Sjölander, E.; Holmedal, B.; Ekström, H.E.; Nes, E. Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37, 1999–2006. [Google Scholar] [CrossRef]
- Szturomski, B. Modelowanie Oddziaływania Wybuchu Podwodnego na Kadłub Okrętu w ujęciu Numerycznym; Wydawnictwo AMW: Gdynia, Poland, 2016. [Google Scholar]
- Jurczak, W. Wpływ prędkości odkształcenia na właściwości mechaniczne stopu AlZn5Mg2CrZr i stali kadłubowej kat. A. Zesz. Nauk. AMW 2007, 48, 37–47. [Google Scholar]
- Szturomski, B.; Jurczak, W.; Światek, K. Determination of dynamic characteristics of austenitic steel to be utilized in FEM simulation and its verification. Zesz. Nauk. AMW 2018, 2, 39–45. [Google Scholar]
- Szturomski, B.; Jurczak, W. Zużycie eksploatacyjne okrętowego stopu aluminium 7020. Energetyka Probl. Energetyki I Gospod. Paliw. Energetycznej 2012, 8, 455–459. [Google Scholar]
- Moćko, W.; Kowalewski, Z.L. Zastosowanie wybranych równań konstytutywnych do opisu właściwości mechanicznych stali wysokoazotowej typu VP159. Modelowanie Inżynierskie 2012, 43, 203–210. [Google Scholar]
- Liang, R.; Khan, A.S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 1999, 15, 963–980. [Google Scholar] [CrossRef]
- Jurczak, W. Wyznaczanie Rzeczywistych, Dynamicznych Charakterystyk Wytrzymałościowych Stali Austenitycznej Oraz Stopów Aluminium; Polish Naval Academy: Gdynia, Poland, 2019.
- Chang, Z.; Chen, J. A new void coalescence mechanism during incremental sheet forming: Ductile fracture modeling and experimental validation. J. Mater. Proc. Technol. 2021, 298, 117319. [Google Scholar] [CrossRef]
- Żaba, K.; Trzepieciński, T.; Rusz, S.; Puchlerska, S.; Balcerzak, M. Full-field temperature measurement of stainless steel specimens subjected to uniaxial tensile loading at various strain rates. Materials 2021, 14, 5259. [Google Scholar] [CrossRef]
- Nowak, Z. Metoda identyfikacji w mechanice materiałów ciągliwych z uszkodzeniami. IFTR Rep. 2006, 5, 1–207. [Google Scholar]
- Luo, T.; Gao, X. On the prediction of ductile fracture by void coalescence and strain localization. J. Mech. Phys. Solids 2018, 113, 82–104. [Google Scholar] [CrossRef]
- Gao, X.; Kim, J. Modeling of ductile fracture: Significance of void coalescence. Int. J. Solids Struct. 2006, 43, 6277–6293. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
Fe | Si | Cu | Zn | Ti | Mn | Mg | Ni | Sn | Pb | Al |
---|---|---|---|---|---|---|---|---|---|---|
0.097 | 0.04 | 0.0037 | 0.0038 | 0.006 | 0.0016 | 0.0007 | 0.0054 | 0.001 | 0.0048 | 99.82 |
Fe | Si | Cu | Zn | Ti | Mn | Mg | Ni | Cr | Pb | Be | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
0.087 | 0.040 | 0.0064 | 0.0036 | 0.0045 | 0.0015 | 1.016 | 0.0056 | 0.0009 | 0.0001 | 0.004 | 98.83 |
Fe | Si | Cu | Zn | Ti | Mn | Mg | Ni | Cr | Pb | Be | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
0.096 | 0.076 | 0.007 | 0.005 | 0.004 | 0.004 | 3.06 | 0.006 | 0.001 | 0.001 | 0.006 | balance |
Fe | Si | Cu | Zn | Ti | Mn | Mg | Ni | Pb | Sn | Al |
---|---|---|---|---|---|---|---|---|---|---|
0.16 | 0.08 | 0.001 | 0.0001 | 0.016 | 0.006 | 7.52 | 0.002 | 0.003 | 0.0001 | balance |
Nominal Stress | Nominal Strain | True Strain | True Stress | Plastic Strain |
---|---|---|---|---|
Material ϕ = 13 mm u = 0.86 | Mechanical Properties | Rmr – Rmn (MPa) | |||||||
---|---|---|---|---|---|---|---|---|---|
True | Nominal | ||||||||
Yield Stress, Rp0,2r, (MPa) | Strain ε0,2r, - | Ultimate Tensile Stress Rmr, (MPa) | Strain εmr, - | Yield Stress, Rp0,2n, (MPa) | Ultimate Tensile Stress Rmn, (MPa) | Strain εmn - | Determined Analytically | Determined Using DIC | |
Al99.5 | 115.3 | 0.0020 | 155.1 | 0.0080 | 120.62 | 153.8 | 0.01 | 1.6 | 1.8 |
Al.-1Mg | 114.5 | 0.0015 | 217.8 | 0.0161 | 196.34 | 213.4 | 0.02 | 4.4 | 5 |
Al.-3Mg | 149.8 | 0.0021 | 322.4 | 0.0218 | 275.51 | 306.8 | 0.023 | 15.6 | 15 |
Al.-7.5Mg | 172.9 | 0.0022 | 514.2 | 0.1018 | 361.37 | 477.3 | 0.11 | 36.9 | 39 |
, | View of Tensile Specimen after Testing | View of Fracture Surface | Fracture Morphology |
---|---|---|---|
750 | |||
1250 |
, | View of Tensile Specimen after Testing | View of Fracture Surface | Fracture Morphology |
---|---|---|---|
750 | |||
1250 |
, | View of Tensile Specimen after Testing | View of Fracture Surface | Fracture Morphology |
---|---|---|---|
750 | |||
1250 |
, | View of Tensile Specimen after Testing | View of Fracture Surface | Fracture Morphology |
---|---|---|---|
750 | |||
1250 |
, | Boundaries of the Voids | Histogram |
---|---|---|
750 | ||
1250 | ||
1750 |
, | Boundaries of the Voids | Histogram |
---|---|---|
750 | ||
1250 |
, | Boundaries of the Voids | Histogram |
---|---|---|
750 | ||
1250 | ||
1750 |
, | Boundaries of the Voids | Histogram |
---|---|---|
750 | ||
1250 | ||
1750 |
Specimen | Number of Voids Per mm2 | (s−1) |
---|---|---|
Al99.5_1 | 8913 | 750 |
Al99.5_2 | 6967 | 1250 |
Al99.5_3 | 5021 | 1750 |
Al.-1Mg_1 | 7093 | 750 |
Al.-1Mg_2 | 7093 | 1250 |
Al.-3Mg_1 | 8913 | 750 |
Al.-3Mg_2 | 11,236 | 1250 |
Al.-3Mg_3 | 7344 | 1750 |
Al.-7.5Mg_1 | 20,087 | 750 |
Al.-7.5Mg_2 | 17,263 | 1250 |
Al.-7.5Mg_3 | 20,966 | 1750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczak, W.; Trzepieciński, T.; Kubit, A.; Bochnowski, W. Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion. Materials 2022, 15, 1066. https://doi.org/10.3390/ma15031066
Jurczak W, Trzepieciński T, Kubit A, Bochnowski W. Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion. Materials. 2022; 15(3):1066. https://doi.org/10.3390/ma15031066
Chicago/Turabian StyleJurczak, Wojciech, Tomasz Trzepieciński, Andrzej Kubit, and Wojciech Bochnowski. 2022. "Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion" Materials 15, no. 3: 1066. https://doi.org/10.3390/ma15031066
APA StyleJurczak, W., Trzepieciński, T., Kubit, A., & Bochnowski, W. (2022). Static and Dynamic Properties of Al-Mg Alloys Subjected to Hydrostatic Extrusion. Materials, 15(3), 1066. https://doi.org/10.3390/ma15031066