In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conventional Workflow
2.2. Digital Workflow
- Fabrication of the stone casts;
- Mounting of the casts in the articulator;
- Blocking out of undercuts in the model;
- Splint design in wax;
- Embedding the wax splint;
- Transferring to PMMA;
- Unbedding the PMMA splint; and
- Occlusal adjustment, finalization and polishing;
- Loading the scans of the upper and the lower jaws into the design software;
- Articulating the scans with the bite scan in the design software;
- CAD;
- CAM;
- Separating the splint from the blank; and
- Finalization and polishing
2.3. Evaluation of the Fit
2.4. Evaluation of the Occlusal Wear
2.5. Statistical Analyses
3. Results
3.1. Duration for the Splint Fabrication
3.2. Fit of the Splints
3.3. Occlusal Wear
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okeson, J. Bell’s Orofacial Pains: The Clinical Management of Orofacial Pain, 6th ed.; Quintessence Publishing: Berlin, Germany, 2004. [Google Scholar]
- Carlsson, G.E. Long-term effects of treatment of craniomandibular disorders. Cranio 1985, 3, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ash, M.M. (Ed.) Klassifikation, Epidemiologie, Ätiologie, Symptome, Diagnose und Pathophysiologie von TMD und CMD. In Schienentherapie: Evidenzbasierte Diagnostik und Behandlung bei TMD und CMD, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 127–145. [Google Scholar]
- Alencar, F.; Becker, A. Evaluation of different occlusal splints and counselling in the management of myofascial pain dysfunction. J. Oral Rehabil. 2009, 36, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Bumann, A.; Lotzmann, U. Funktionsdiagnostik und Therapieprinzipen. In Farbatlanten der Zahnmedizin, Stuttgart, 1st ed.; Rateitschak, K.-H., Wolf, H.F., Eds.; Georg Thieme Verlag: New York, NY, USA, 2016; pp. 11–52. [Google Scholar]
- Fricton, J.; Look, J.O.; Wright, E.; Alencar, F.G.P.; Chen, H.; Lang, M.; Ouyang, W.; Velly, A.M. Systematic review and meta-analysis of randomized controlled trials evaluating intraoral orthopedic appliances for temporomandibular disorders. J. Orofac. Pain 2010, 24, 237–254. [Google Scholar]
- Kuzmanovic Pficer, J.; Dodic, S.; Lazic, V.; Trajkovic, G.; Milic, N.; Milicic, B. Occlusal stabilization splint for patients with temporomandibular disorders: Meta-analysis of short and long term effects. PLoS ONE 2017, 12, e0171296. [Google Scholar] [CrossRef]
- Anderson, G.C.; Schulte, J.K.; Goodkind, R.J. Comparative study of two treatment methods for internal derangement of the temporomandibular joint. J Prosthet. Dent. 1985, 53, 392–397. [Google Scholar] [CrossRef]
- Wassell, R.W.; Adams, N.; Kelly, P.J. The treatment of temporomandibular disorders with stabilizing splints in general dental practice: One-year follow-up. J. Am. Dent. Assoc. 2006, 137, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Freesmeyer, W.B. Okklusionsschienen. Zahnärztl. Mitt. 2004, 22, 2950–2960. [Google Scholar]
- Ordelheide, A.; Bernhardt, O. The effectiveness of occlusal splints for the treatment of craniomandibular dysfunctions—An overview of national and international publications. J. Craniomandib. Funct. 2009, 1, 323–338. [Google Scholar]
- Schindler, H.J.; Svensson, P. Myofascial Temporomandibular Disorder Pain Pathophysiology and Management. In The Puzzle of Orofacial Pain: Integrating Research into Clinical Management, 1st ed.; Türp, J.C., Sommer, C., Hugger, A., Eds.; Karger: Basel, Switzerland, 2007; pp. 91–123. [Google Scholar]
- Schindler, H.J.; Hugger, A.; Kordaß, B.; Türp, J.C. Splint therapy for temporomandibular disorders: Basic principles. J. CranioMandib. Funct. 2014, 6, 207–230. [Google Scholar]
- Schindler, H.J.; Türp, J.C.; Nilges, P.; Hugger, A. Therapie bei Schmerzen der Kaumuskulatur: Aktualisierung der Empfehlungen. Schmerz 2013, 27, 243–252. [Google Scholar] [CrossRef]
- Ash, M.M.; Ramfjord, S.P. Reflections on the Michigan splint and other intraocclusal devices. J. Mich. Dent. Assoc. 1998, 80, 32–41. [Google Scholar] [PubMed]
- Geering, A.H.; Lang, N.P. Die Michigan-Schiene, ein diagnostisch und therapeutisches Hilfsmittel bei Funktionsstörungen im Kausystem: Herstellung im Artikulator und Eingliederung am Patienten. Schweiz. Mon. Zahnmed. 1978, 88, 32–38. [Google Scholar]
- Dedem, P.; Türp, J.C. Digital Michigan splint—From intraoral scanning to plasterless manufacturing. Int. J. Comput. Dent. 2016, 19, 63–76. [Google Scholar] [PubMed]
- Ender, A.; Mehl, A. Full arch scans: Conventional versus digital impression-an in-vitro study. Int. J. Comput. Dent. 2011, 14, 11–21. [Google Scholar]
- Güth, J.-F.; Edelhoff, D.; Schweiger, J.; Keul, C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin. Oral Investig. 2016, 20, 1487–1494. [Google Scholar] [CrossRef]
- Patzelt, S.B.M.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2014, 18, 1687–1694. [Google Scholar] [CrossRef]
- Zimmermann, M.; Koller, C.; Rumetsch, M.; Ender, A.; Mehl, A. Precision of guided scanning procedures for full-arch digital impressions in vivo. J. Orofac. Orthop. 2017, 78, 466–471. [Google Scholar] [CrossRef]
- Methani, M.M.; Cesar, P.F.; de Paula Miranda, R.B.; Morimoto, S.; Özcan, M.; Revilla-León, M. Additive manufacturing in dentistry: Current technologies, clinical applications, and limitations. Curr. Oral Health Rep. 2020, 7, 327–334. [Google Scholar] [CrossRef]
- Joda, T.; Brägger, U. Patient-centered outcomes comparing digital and conventional implant impression procedures: A randomized crossover trial. Clin. Oral Implant. Res. 2016, 27, e185–e189. [Google Scholar] [CrossRef]
- Beuer, F.; Schweiger, J.; Neumeier, P.; Güth, J.-F.; Edelhoff, D. Digitales Update: Wo stehen die Intraoralscanner heute? ZWR 2012, 121, 488–494. [Google Scholar] [CrossRef]
- Burhardt, L.; Livas, C.; Kerdijk, W.; van der Meer, W.J.; Ren, Y. Treatment comfort, time perception, and preference for conventional and digital impression techniques: A comparative study in young patients. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Grünheid, T.; McCarthy, S.D.; Larson, B.E. Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, C.; Kleven, M.; Heian, M.; Hjortsjö, C. Clinical comparison of conventional and additive manufactured stabilization splints. Acta Biomater. 2018, 4, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Venezia, P.; Lo Muzio, L.; de Furia, C.; Torsello, F. Digital manufacturing of occlusal splint: From intraoral scanning to 3D printing. J. Osseointegr. 2019, 11, 535–539. [Google Scholar] [CrossRef]
- Pho Duc, J.M.; Hüning, S.V.; Grossi, M.L. Parallel randomized controlled clinical trial in patients with temporomandibular disorders treated with a CAD/CAM V versus a conventional S stabilization splint. Int. J. Prosthodont. 2016, 29, 340–350. [Google Scholar] [CrossRef]
- Lutz, A.-M.; Hampe, R.; Roos, M.; Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J. Prosthet. Dent. 2019, 121, 166–172. [Google Scholar] [CrossRef]
- Wesemann, C.; Spies, B.C.; Sterzenbach, G.; Beuer, F.; Kohal, R.; Wemken, G.; Krügel, M.; Pieralli, S. Polymers for conventional, subtractive, and additive manufacturing of occlusal devices differ in hardness and flexural properties but not in wear resistance. Dent. Mater. 2020, 23, 432–442. [Google Scholar] [CrossRef]
- Huettig, F.; Kustermann, A.; Kuscu, E.; Geis-Gerstorfer, J.; Spintzyk, S. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing. J. Mech. Behav. Biomed. Mater. 2017, 75, 175–179. [Google Scholar] [CrossRef]
- Hellmann, D.; Türp, J.C. Praxis der Schienenherstellung. In Konzept Okklusionsschiene: Basistherapie bei Schmerzhaften Kraniomandibulären Dysfunktionen, 1st ed.; Schindler, H.J., Türp, J.C., Eds.; Quintessenz Verlag: Berlin, Germany, 2017; pp. 75–90. [Google Scholar]
- Türp, J.C. Step by Step Kieferrelationsbestimmung. Quintessenz Zahntech. 2011, 37, 1136–1143. [Google Scholar]
- Türp, J.C. Okklusionsschienen. Dtsch. Zahnärztl. Z. 2002, 57, 393–395. [Google Scholar]
- Broetzner, H.-P. Sirona Connect—Training: Digitale Abformung. 2021. Available online: https://assets.dentsplysirona.com/websites/sirona-connect/pdf/sirona-connect-training_DE.pdf (accessed on 18 June 2021).
- Salmi, M.; Paloheimo, K.-S.; Tuomi, J.; Ingman, T.; Mäkitie, A. A digital process for additive manufacturing of occlusal splints: A clinical pilot study. J. R. Soc. Interface 2013, 10, 20130203. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016, 115, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernen, F.; Schlager, S.; Seidel Alvarez, V.; Mehrhof, J.; Vach, K.; Kohal, R.; Nelson, K.; Flügge, T. Accuracy of intraoral scans: An in vivo study of different scanning devices. J. Prosthet. Dent. 2021. inpress. [Google Scholar] [CrossRef] [PubMed]
- Patzelt, S.B.M.; Lamprinos, C.; Stampf, S.; Att, W. The time efficiency of intraoral scanners: An in vitro comparative study. J. Am. Dent. Assoc. 2014, 145, 542–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joda, T.; Lenherr, P.; Dedem, P.; Kovaltschuk, I.; Brägger, U.; Zitzmann, N.U. Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: A randomized controlled trial. Clin. Oral Implant. Res. 2017, 28, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- Burzynski, J.A.; Firestone, A.R.; Beck, F.M.; Field, H.W.; Deguchi, T. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 534–541. [Google Scholar] [CrossRef]
- Wesemann, C.; Spies, B.C.; Schaefer, D.; Adali, U.; Beuer, F.; Pieralli, S. Accuracy and its impact on fit of injection molded, milled and additively manufactured occlusal splints. J. Mech. Behav. Biomed. Mater. 2021, 114, 104179. [Google Scholar] [CrossRef]
- De Souza Leão, R.; de Moraes, S.L.D.; da Silva Aquino, K.A.; Isolan, C.P.; Casado, B.G.S.; Montes, M.A.J.R. Effect of pressure, post-pressing time, and polymerization cycle on the degree of conversion of thermoactivated acrylic resin. Int. J. Dent. 2018, 3, 5743840. [Google Scholar] [CrossRef]
- Nguyen, J.-F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef]
- Lambrechts, P.; Debels, E.; van Landuyt, K.; Peumans, M.; van Meerbeek, B. How to simulate wear? Overview of existing methods. Dent. Mater. 2006, 22, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, T.; Huffmann, A.M.S.; Eichberger, M.; Schmidlin, P.R.; Stawarczyk, B. Two-body wear rate of PEEK, CAD/CAM resin composite and PMMA: Effect of specimen geometries, antagonist materials and test set-up configuration. Dent. Mater. 2016, 32, e127–e136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Score | Overall Fit | Static Occlusion |
---|---|---|
1 | No Further Adaption Required | 9–10 Contact Points |
2 | Subtractive Adaption Possible | 7–8 Contact Points |
3 | Additive Rework Necessary | 5–6 Contact Points |
4 | New Fabrication Necessary | ≤4 Contact Points |
N | Median | Mean | SD | |||||
---|---|---|---|---|---|---|---|---|
c | d | c | d | c | d | c | d | |
Time Bite Registration | 15 | 15 | 4 min 53 s | 5 min 40 s | 5 min 7 s | 5 min 28 s | 39 s | 39 s |
Time Impression | 15 | 15 | 6 min 17 s | 17 min 45 s | 6 min 59 s | 16 min 58 s | 1 min 28 s | 2 min 54 s |
Time Dentist–Total | 15 | 15 | 11 min 10 s | 23 min 25 s | 12 min 6 s | 22 min 26 s | 2 min 27 s | 3 min 19 s |
Time Dental Technician | 15 | 15 | 155 min 00 s | 47 min 4 s | 163 min 32 s | 47 min 52 s | 17 min 24 s | 8 min 46 s |
Overall Fit | 15 | 15 | 2 | 1 | 2.6 | 1.1 | 0.9 | 0.5 |
Static Occlusion | 15 | 15 | 2 | 2 | 2.5 | 1.7 | 1.0 | 0.7 |
Wear | 8 | 8 | 517 µm | 559 µm | 518 µm | 539 µm | 4 µm | 5 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patzelt, S.B.M.; Krügel, M.; Wesemann, C.; Pieralli, S.; Nold, J.; Spies, B.C.; Vach, K.; Kohal, R.-J. In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints. Materials 2022, 15, 1085. https://doi.org/10.3390/ma15031085
Patzelt SBM, Krügel M, Wesemann C, Pieralli S, Nold J, Spies BC, Vach K, Kohal R-J. In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints. Materials. 2022; 15(3):1085. https://doi.org/10.3390/ma15031085
Chicago/Turabian StylePatzelt, Sebastian Berthold Maximilian, Marei Krügel, Christian Wesemann, Stefano Pieralli, Julian Nold, Benedikt Christopher Spies, Kirstin Vach, and Ralf-Joachim Kohal. 2022. "In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints" Materials 15, no. 3: 1085. https://doi.org/10.3390/ma15031085
APA StylePatzelt, S. B. M., Krügel, M., Wesemann, C., Pieralli, S., Nold, J., Spies, B. C., Vach, K., & Kohal, R. -J. (2022). In Vitro Time Efficiency, Fit, and Wear of Conventionally- versus Digitally-Fabricated Occlusal Splints. Materials, 15(3), 1085. https://doi.org/10.3390/ma15031085