Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukai, T.; Nakamura, S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 1999, 38, 5735–5739. [Google Scholar] [CrossRef]
- Wang, R.J.; Wang, C.Y.; Feng, Y.T. Effective geometric size and bond-loss effect in nanoelasticity of GaN nanowires. Int. J. Mech. Sci. 2017, 130, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xiu, X.; Zhang, L.; Zhang, R.; Zhang, Y.; Su, J.; Xie, Z.; Liu, B.; Shan, Y. Strain in GaN epi-layer grown by hydride vapor phase epitaxy. Spectrosc. Spectr. Anal. 2013, 33, 2105–2108. [Google Scholar]
- Kumar, A.; Kanjilal, D.; Kumar, V.; Singh, R. Defect formation in GaN epitaxial layers due to swift heavy ion irradiation. Radiat. Eff. Defects Solids 2011, 166, 739–742. [Google Scholar] [CrossRef]
- Ai, W.S.; Zhang, L.M.; Jiang, W.; Peng, J.X.; Chen, L.; Wang, T.S. Raman study of InxGa1−xN(x=0.32–0.9) films irradiated with Xe ions at room temperature and 773 K. Nucl. Instrum. Methods Phys. Res. Sect. B 2018, 415, 48–53. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhang, C.H.; Li, J.J.; Meng, Y.C.; Yang, Y.T.; Song, Y.; Ding, Z.N.; Yan, T.X. Damage to epitaxial GaN layer on Al2O3 by 290-MeV 238U32+ ions irradiation. Sci. Rep. 2018, 8, 4121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Q.; Zhang, C.H.; Xian, Y.Q.; Liu, J.; Ding, Z.N.; Yan, T.X.; Chen, Y.G.; Su, C.H.; Li, J.Y.; Liu, H.P. Degradation mechanisms of optoelectric properties of GaN via highly-charged 209Bi33+ ions irradiation. Appl. Surf. Sci. 2018, 440, 814–820. [Google Scholar] [CrossRef]
- Fujikane, M.; Leszczyński, M.; Nagao, S.; Nakayama, T.; Yamanaka, S.; Niihara, K.; Nowak, R. Elastic-plastic transition during nanoindentation in bulk GaN crystal. J. Alloy. Compd. 2008, 450, 405–411. [Google Scholar] [CrossRef]
- Huang, J.; Xu, K.; Fan, Y.M.; Niu, M.T.; Zeng, X.H.; Wang, J.F.; Yang, H. Nanoscale anisotropic plastic deformation in single crystal GaN. Nanoscale Res. Lett. 2012, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391, 561–563. [Google Scholar] [CrossRef]
- Lupinacci, A.; Chen, K.; Li, Y.; Kunz, M.; Jiao, Z.; Was, G.S.; Abad, M.D.; Minor, A.M.; Hosemann, P. Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction. J. Nucl. Mater. 2015, 458, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Hosemann, P.; Shin, C.; Kiener, D. Small scale mechanical testing of irradiated materials. J. Mater. Res. 2015, 30, 1231–1245. [Google Scholar] [CrossRef]
- Jin, K.; Xia, Y.; Crespillo, M.; Xue, H.; Zhang, Y.; Gao, Y.F.; Bei, H. Quantifying early stage irradiation damage from nanoindentation pop-in tests. Scr. Mater. 2018, 157, 49–53. [Google Scholar] [CrossRef]
- Gil, E.; André, Y.; Cadoret, R.; Trassoudaine, A. Hydride vapor phase epitaxy for current III–V and nitride semiconductor compound issues. In Handbook of Crystal Growth, 2nd ed.; Kuech, T.F., Ed.; North-Holland: Boston, MA, USA, 2015; pp. 51–93. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determinning hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Bei, H.; Xia, Y.Z.; Barabash, R.I.; Gao, Y.F. A tale of two mechanisms: Strain-softening versus strain-hardening in single crystals under small stressed volumes. Scr. Mater. 2016, 110, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Geetha, D.; Sophia, P.J.; Radhika, R.; Arivuoli, D. Evaluation of nanoindentation and nanoscratch characteristics of GaN/InGaN epilayers. Mater. Sci. Eng. A 2017, 683, 64–69. [Google Scholar] [CrossRef]
- Fujikane, M.; Yokogawa, T.; Nagao, S.; Nowak, R. Strain rate controlled nanoindentation examination and incipient plasticity in bulk GaN crystal. Jpn. J. Appl. Phys. 2013, 52, 08JJ01. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Kucheyev, S.O.; Bradby, J.E.; Williams, J.S.; Jagadish, C.; Swain, M.V.; Li, G. Deformation behavior of ion-beam-modified GaN. Appl. Phys. Lett. 2001, 78, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Xiao, C.; Xia, X. Force-depth relationships with irradiation effect during spherical nano-indentation: A theoretical analysis. J. Nucl. Mater. 2020, 531, 152012. [Google Scholar] [CrossRef]
- Sekido, K.; Ohmura, T.; Zhang, L.; Hara, T.; Tsuzaki, K. The effect of interstitial carbon on the initiation of plastic deformation of steels. Mater. Sci. Eng. A 2011, 530, 396–401. [Google Scholar] [CrossRef]
- Jian, S.-R.; Ke, W.-C.; Juang, J.-Y. Mechanical characteristics of Mg-doped GaN thin films by nanoindentation. Nanosci. Nanotechnol. Lett. 2012, 4, 598–603. [Google Scholar] [CrossRef]
- Pöhl, F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 2019, 9, 15350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Y.; Shang, F.; Wan, Q.; Yan, Y. A molecular dynamics study on indentation response of single crystalline wurtzite GaN. J. Appl. Phys. 2018, 124, 115102. [Google Scholar] [CrossRef]
- Bradby, J.E.; Williams, J.S.; Swain, M.V. Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 2004, 19, 380–386. [Google Scholar] [CrossRef]
- Mason, J.K.; Lund, A.C.; Schuh, C.A. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 2006, 73, 054102. [Google Scholar] [CrossRef]
- Schuh, C.A.; Mason, J.K.; Lund, A.C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 2005, 4, 617–621. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, L.; An, B.; Fukuyama, S.; Yokogawa, K. Hydrogen-enhanced dislocation activity and vacancy formation during nanoindentation of nickel. Phys. Rev. B 2009, 80, 094113. [Google Scholar] [CrossRef]
- Field, J.S.; Swain, M.V. A simple predictive model for spherical indentation. J. Mater. Res. 1993, 8, 297–306. [Google Scholar] [CrossRef]
- Lu, J.; Ren, H.; Deng, D.; Wang, Y.; Chen, K.J.; Lau, K.; Zhang, T. Thermally activated pop-in and indentation size effects in GaN films. J. Phys. D: Appl. Phys. 2012, 45, 085301. [Google Scholar] [CrossRef]
- Nowak, R.; Pessa, M.; Suganuma, M.; Leszczynski, M.; Grzegory, I.; Porowski, S.; Yoshida, F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Appl. Phys. Lett. 1999, 75, 2070–2072. [Google Scholar] [CrossRef]
- Gao, F.; He, J.; Wu, E.; Liu, S.; Yu, D.; Li, D.; Zhang, S.; Tian, Y. Hardness of covalent crystals. Phys. Rev. Lett. 2003, 91, 015502. [Google Scholar] [CrossRef] [PubMed]
- Burnett, P.J.; Page, T.F. Criteria for mechanical property modifications of ceramic surfaces by ion implantation. Radiat. Eff. 1986, 97, 283–296. [Google Scholar] [CrossRef]
- Reyes-Martinez, M.A.; Abdelhady, A.L.; Saidaminov, M.I.; Chung, D.Y.; Bakr, O.M.; Kanatzidis, M.G.; Soboyejo, W.O.; Loo, Y.-L. Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals. Adv. Mater. 2017, 29, 1606556. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.; Volinsky, A.A. (Eds.) Small Scale Deformation Using Advanced Nanoindentation Techniques; MDPI AG: Basel, Switzerland, 2019. [Google Scholar]
- Xiao, X.; Terentyev, D.; Chu, H.; Duan, H. Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: A review and perspective. Acta Mech. Sin. 2020, 36, 397–411. [Google Scholar] [CrossRef]
Fluence D | Hardness H | τmax | Mean Value of τmax | Pc | Mean Value of Pc | V1 | ∆h | K |
---|---|---|---|---|---|---|---|---|
(1015 cm−2) | (GPa) | (GPa) | (GPa) | (μN) | (μN) | (Å3) | (nm) | (μN/nm) |
0 | 19.2 ± 0.2 | 11.0–14.5 | 13.1 | 423.3−982.4 | 712.8 | 7.24 (=0.22b3) | 0.5–6.2 | 81.5 ± 2.0 |
0.72 | 21.1 ± 0.4 | 11.2–14.2 | 13.0 | 447.4–907.9 | 703.4 | 8.52 (=0.26b3) | 0.6–4.5 | 108.4 ± 4.7 |
1.4 | 22.1 ± 0.2 | 11.3–14.6 | 13.3 | 461.4–994.4 | 745.6 | 8.16 (=0.25b3) | 0.7–4.5 | 121.9 ± 3.6 |
2.4 | 22.6 ± 0.3 | 11.6–15.8 | 14.1 | 501.8–1261.4 | 899.1 | 7.77 (=0.24b3) | 0.7–4.6 | 142.6 ± 3.4 |
4.8 | 22.8 ± 0.5 | 11.5–15.5 | 14.0 | 491.5–1187.1 | 867.6 | 7.40 (=0.23b3) | 0.4–4.7 | 143.5 ± 3.3 |
9.6 | 23.2 ± 0.3 | 11.7–15.9 | 14.5 | 518.0–1277.5 | 967.3 | 8.47 (=0.26b3) | 0.7–4.2 | 149.2 ± 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Zhang, X.; Peng, S.; Jin, F.; Wan, Q.; Xue, J.; Yi, X. Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials 2022, 15, 1210. https://doi.org/10.3390/ma15031210
Dong Z, Zhang X, Peng S, Jin F, Wan Q, Xue J, Yi X. Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials. 2022; 15(3):1210. https://doi.org/10.3390/ma15031210
Chicago/Turabian StyleDong, Zhaohui, Xiuyu Zhang, Shengyuan Peng, Fan Jin, Qiang Wan, Jianming Xue, and Xin Yi. 2022. "Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis" Materials 15, no. 3: 1210. https://doi.org/10.3390/ma15031210
APA StyleDong, Z., Zhang, X., Peng, S., Jin, F., Wan, Q., Xue, J., & Yi, X. (2022). Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis. Materials, 15(3), 1210. https://doi.org/10.3390/ma15031210