Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis
Abstract
:1. Introduction
2. Materials and Asphalt Mixture Design
2.1. Materials
2.1.1. Asphalt
2.1.2. Fibers
2.1.3. Mineral Aggregates
2.2. Asphalt Mixture Composition Design
3. Test Methods
3.1. Four-Point Bending Fatigue Test
3.2. Indirect Tensile Test
3.3. Semi-Circular Bending Test (SCB)
3.4. Environmental Scanning Electron Microscope (ESEM)
4. Results and Discussion
4.1. Four-Point Bending Fatigue Test Results
4.2. Indirect Tensile Test Results
4.3. Semicircular Bending Test Results
4.4. Microscopic Morphology of Fiber Asphalt Mixture Sliced
5. Conclusions
- (1)
- The addition of BF significantly increased the fatigue life and the accumulated dissipation energy of the mixture, by up to 3~4 times in AC-13 and by about 4~5 times in SMA-13, resulting in asphalt mixtures being less prone to fatigue cracking.
- (2)
- After adding BF, the indirect tensile strength of the asphalt mixture slightly increased. The TI substantially increased. BF significantly increased the toughness and improved the anti-cracking properties of the mixture.
- (3)
- BF improved both the FI and Gf in the SCB test, indicating that BF can delay the development of cracks.
- (4)
- BFs were randomly dispersed in the asphalt mixture and lapped together to form a spatial network. This fiber network made asphalt mixtures less prone to cracking and delayed the development of cracks.
- (5)
- The reinforcing effect of BF is related to aggregate gradation and the strain level. The reinforcing effect of BF was more pronounced for SMA13. Moreover, the higher the strain in the asphalt mix matrix, the greater the reinforcing effect of BF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elkashef, M.; Williams, R.C.; Cochran, E. Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures. Int. J. Fatigue 2018, 108, 90–95. [Google Scholar] [CrossRef]
- Shanbara, H.K.; Ruddock, F.; Atherton, W. A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibers. Constr. Build. Mater. 2018, 172, 166–175. [Google Scholar] [CrossRef]
- Abtabi, S.M.; Sheikhzadeh, M. Fiber reinforced asphalt-concrete—A review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Xiao, P.; Chen, C.; Xia, J.; Lou, K. Evaluation of the long-term performances of SMA-13 containing different fibers. Appl. Sci. 2021, 11, 5145. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, S.; Yoo, D.-Y.; Shin, H.-O. Enhancing mechanical properties of asphalt concrete using synthetic fibers. Constr. Build. Mater. 2018, 178, 233–243. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Shokorlou, Y.M.; Amani, B. Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Eng. Fract. Mech. 2020, 226, 106875. [Google Scholar] [CrossRef]
- Fakhri, M.; Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
- Bonica, C.; Toraldo, E.; Andena, L.; Marano, C.; Mariani, E. The effects of fibers on the performance of bituminous mastics for road pavements. Compos. Part B Eng. 2016, 95, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Pirmohammad, S.; Shokorlou, Y.M.; Amani, B. Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Constr. Build. Mater. 2020, 239, 117850. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fiber and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual-Muñoz, P.; Castro-Fresno, D. Mechanical performance of fibers in hot mix asphalt: A review. Constr. Build. Mater. 2019, 200, 756–769. [Google Scholar] [CrossRef]
- Morova, N. Investigation of usability of basalt fibers in hot mix asphalt concrete. Constr. Build. Mater. 2013, 47, 175–180. [Google Scholar] [CrossRef]
- Celauro, C.; Praticò, F. Asphalt mixtures modified with basalt fibres for surface courses. Constr. Build. Mater. 2018, 170, 245–253. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Lv, J. Effect of basalt fiber distribution on the flexural–tensile rheological performance of asphalt mortar. Constr. Build. Mater. 2018, 179, 307–314. [Google Scholar] [CrossRef]
- Kathari, P.M.; Sandra, A.K.; Sravana, P. Experimental investigation on the performance of asphalt binders reinforced with basalt fibers. Innov. Infrastruct. Solut. 2018, 3, 76. [Google Scholar] [CrossRef]
- Zhou, F.; Newcomb, D. Experimental Design for Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures; Draft final report of NCHRP 9-57; Texas A&M Transportation Institute: College Station, TX, USA, 2016. [Google Scholar]
- Zhou, F.; Im, S.; Sun, L.; Scullion, T. Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Mater. Pavement Des. 2017, 18 (Suppl. S4), 405–427. [Google Scholar] [CrossRef]
- Mandal, T.; Ling, C.; Chaturabong, P.; Bahia, H.U. Evaluation of analysis methods of the semi-circular bend (SCB) test results for measuring cracking resistance of asphalt mixtures. Int. J. Pavement Res. Technol. 2019, 12, 456–463. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Bahia, H.U. Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures. Constr. Build. Mater. 2020, 252, 119060. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Pittet, M.; Dumont, A.-G.; Partl, M.N. Comparison of the two point bending and four point bending test methods for aged asphalt concrete field samples. Mater. Struct. 2015, 48, 2901–2913. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad, M.; Hasan, A.; Faisal, H.M.; Tarefder, R.A. Laboratory performance evaluation of fine and coarse-graded asphalt concrete mix. J. Mater. Civ. Eng. 2019, 31, 04019259. [Google Scholar] [CrossRef]
- Daniel, J.S.; Corrigan, M.; Jacques, C.; Nemati, R.; Dave, E.V.; Congalton, A. Comparison of asphalt mixture specimen fabrication methods and binder tests for cracking evaluation of field mixtures. Road Mater. Pavement Des. 2019, 20, 1059–1075. [Google Scholar] [CrossRef]
- Kaseer, F.; Yin, F.; Arámbula-Mercado, E.; Martin, A.E.; Daniel, J.S.; Salari, S. Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Constr. Build. Mater. 2018, 167, 286–298. [Google Scholar] [CrossRef]
- Ozer, H.; Al-Qadi, I.L.; Singhvi, P.; Bausano, J.; Carvalho, R.; Li, X.; Gibson, N. Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. Int. J. Pavement Eng. 2018, 19, 264–278. [Google Scholar] [CrossRef]
- Islam, M. Thermal Fatigue Damage of Asphalt Pavement. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 2015. [Google Scholar]
- Budiman, B.A.; Adziman, F.; Sambegoro, P.L.; Nurprasetio, I.P.; Ilhamsyah, R.; Aziz, M. The role of interfacial rigidity to crack propagation path in fiber reinforced polymer composite. Fibers Polym. 2018, 19, 1980–1988. [Google Scholar] [CrossRef]
- Im, S.; Karki, P.; Zhou, F. Development of new mix design method for asphalt mixtures containing RAP and rejuvenators. Constr. Build. Mater. 2016, 115, 727–734. [Google Scholar] [CrossRef]
- AASHTO T321. Standard Method of test for Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending; AASHTO: Washington, DC, USA, 2017. [Google Scholar]
- AASHTO T322. Standard Method of Test for Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device; AASHTO: Washington, DC, USA, 2011. [Google Scholar]
- AASHTO TP105. Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB); AASHTO: Washington, DC, USA, 2015. [Google Scholar]
- Liu, Q.; Schlangen, E.; Van de Ven, M.; Van Bochove, G.; Van Montfort, J. Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. Constr. Build. Mater. 2012, 29, 403–409. [Google Scholar] [CrossRef]
- Lopez-Montero, T.; Miro, R.; Botella, R.; Pérez-Jiménez, F.E. Obtaining the fatigue laws of bituminous mixtures from a strain sweep test: Effect of temperature and aging. Int. J. Fatigue 2017, 100, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Ziari, H.; Aliha, M.R.M.; Moniri, A.; Saghafi, Y. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Constr. Build. Mater. 2020, 230, 117015. [Google Scholar] [CrossRef]
- Birgisson, B.; Montepara, A.; Romeo, E.; Roncella, R.; Napier, J.; Tebaldi, G. Determination and prediction of crack patterns in hot mix asphalt (HMA) mixtures. Eng. Fract. Mech. 2008, 75, 664–673. [Google Scholar] [CrossRef]
- Sadeghian, M.; Namin, M.L.; Goli, H. Evaluation of the fatigue failure and recovery of SMA mixtures with cellulose fiber and with SBS modifier. Constr. Build. Mater. 2019, 226, 818–826. [Google Scholar] [CrossRef]
- Christensen, R.M.; Zywicz, E. A three-dimensional constitutive theory for fiber composite laminated media. J. Appl. Mech. 1990, 57, 948–955. [Google Scholar] [CrossRef] [Green Version]
Index | Specification Requirements | Value | Test Method |
---|---|---|---|
Penetration at 25 °C/0.1 mm | 60~80 | 71 | ASTM D 5 |
Softening point/°C | ≮55 | 64 | ASTM D 2398 |
Ductility at 5 °C/cm | ≮30 | 48 | ASTM D 113 |
Viscosity at 135 °C/Pa.s | ≯3 | 1.8 | ASTM D 4402 |
Elastic recovery at 25 °C/% | ≮65 | 76 | ASTM D 6084 |
Types | BF | LF | |
---|---|---|---|
Characteristics | |||
Color | Golden brown | Gray | |
Form | Smooth | Loose flocculent | |
Single fiber diameter/μm | 13~16 | ≈13 | |
Length/mm | 6 | 0.8 | |
Density/(g·cm−3) | 2.715 | 1.295 | |
Breaking strength/Mpa | ≥2000 | <300 | |
Melting point/°C | 1600 | 230 |
Aggregate Size (mm) | 10–15 mm | 5–10 mm | 3–5 mm | 0–3 mm | ||||
---|---|---|---|---|---|---|---|---|
Limestone | Basalt | Limestone | Basalt | Limestone | Basalt | Limestone | Basalt | |
Bulk relative density | 2.753 | 2.831 | 2.746 | 2.807 | 2.721 | 2.886 | 2.635 | 2.895 |
Apparent relative gravity | 2.776 | 2.931 | 2.778 | 2.936 | 2.768 | 2.927 | 2.695 | 2.967 |
Water absorption (%) | 0.30 | 0.12 | 0.42 | 0.16 | 0.62 | 0.48 | 0.84 | 0.82 |
Items | Optimal Asphalt Content (OAC) (%) | Voids Volume (VV) (%) | Voids in the Mineral Aggregate (VMA) (%) | Voids Filled with Asphalt (VFA) (%) | ||||
---|---|---|---|---|---|---|---|---|
AC-13 | SMA-13 | AC-13 | SMA-13 | AC-13 | SMA-13 | AC-13 | SMA-13 | |
Without BF | >4.7 | >5.8 | >4.1 | >3.8 | >14.2 | >17.2 | >71.1 | >77.9 |
With BF | 4.9 | 5.5 | 4.1 | 3.9 | 14.3 | 16.7 | 71.3 | 76.6 |
Specification | - | - | 3~6 | 3–4 | ≮14.0 | ≮16.5 | 65~75 | 75–85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Meng, W.; Xia, J.; Xiao, P. Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis. Materials 2022, 15, 744. https://doi.org/10.3390/ma15030744
Wu B, Meng W, Xia J, Xiao P. Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis. Materials. 2022; 15(3):744. https://doi.org/10.3390/ma15030744
Chicago/Turabian StyleWu, Bangwei, Weijie Meng, Ji Xia, and Peng Xiao. 2022. "Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis" Materials 15, no. 3: 744. https://doi.org/10.3390/ma15030744
APA StyleWu, B., Meng, W., Xia, J., & Xiao, P. (2022). Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis. Materials, 15(3), 744. https://doi.org/10.3390/ma15030744