A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Situ Synthesis of GA-Coated MNPs
- Initially, in two separated flasks, 11 mL of FeCl3·6H2O 0.4 M and 11 mL of FeCl2·4H2O 0.2 M were dissolved in 100 mL of distilled water.
- In the first flask, 10 mL of 10% w/w GA (for MNP-GA1) was added, and in the second, 10 mL of 5% w/w GA (for MNP-GA2).
- To each solution obtained in each flask, 20 mL 0.3 M solution of (25%) NH4OH was slowly added; then, these mixtures were stirred at 380 rpm and heated for 90 min at 90 °C.
- The coated MNPs of the obtained solutions were separated by magnetic decantation using a large permanent magnet (1.2 T in the surface) and adding 80 mL of distilled water. This washing procedure was repeated three times.
- Finally, the MNPs were suspended in water obtaining two ferrofluids with GA-coated MNPs.
2.3. Characterization Techniques
2.4. Cell Line and Culturing Conditions
2.5. Cytotoxicity and Magnetic Fluid Hyperthermia (MFH) Assays
3. Results and Discussion
3.1. PhysicoChemical Characterization of the GA-Coated MNPs
3.2. Cell Biological Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milad, B.; Shadie, H.; Mohammad, H. Biocompatibility and hyperthermia cancer therapy of casein-coated iron oxide nanoparticles in mice. Polym. Adv. Technol. 2020, 31, 1544–1552. [Google Scholar] [CrossRef]
- Sánchez, O.S.; Castelo-Grande, T.; Augusto, P.A.; Compaña, J.M.; Barbosa, D. Cubic Nanoparticles for Magnetic Hyperthermia: Process Optimization and Potential Industrial Implementation. Nanomaterials 2021, 11, 1652. [Google Scholar] [CrossRef]
- Sahin, O.; Meiyazhagan, A.; Ajayan, P.M.; Krishnan, S. Immunogenicity of externally activated nanoparticles for cancer therapy. Cancers 2020, 12, 3559. [Google Scholar] [CrossRef]
- Ayubi, M.; Karimi, M.; Abdpour, S.; Rostamizadeh, K.; Parsa, M.; Zamani, M.; Saedi, A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Eng. C 2019, 104, 109810. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.; Ruallo, J.M.; Villaflores, O.B.; Ger, T.R.; Hsiao, C.D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Senthilkumar, N.; Sharma, P.K.; Sood, N.; Bhalla, N. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord. Chem. Rev. 2021, 445, 214082. [Google Scholar] [CrossRef]
- Garanina, A.S.; Naumenko, V.A.; Nikitin, A.A.; Myrovali, E.; Petukhova, A.Y.; Klimyuk, S.V.; Nalench, Y.A.; Ilyasov, A.R.; Vodopyanov, S.S.; Erofeev, A.S.; et al. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomed. Nanotechnol. Biol. Med. 2020, 25, 102171. [Google Scholar] [CrossRef] [PubMed]
- Aberkane, L.; Jasniewski, J.; Gaiani, C.; Hussain, R.; Scher, J.; Sanchez, C. Structuration mechanism of β-lactoglobulin - acacia gum assemblies in presence of quercetin. Food Hydrocoll. 2012, 29, 9–20. [Google Scholar] [CrossRef]
- Zamani, H.; Rastegari, B.; Varamini, M. Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles. J. Drug Deliv. Sci. Technol. 2019, 54, 101278. [Google Scholar] [CrossRef]
- Rajabi, H.; Jafari, S.M.; Rajabzadeh, G.; Sarfarazi, M.; Sedaghati, S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123644. [Google Scholar] [CrossRef]
- Patitsa, M.; Karathanou, K.; Kanaki, Z.; Tzioga, L.; Pippa, N.; Demetzos, C.; Verganelakis, D.A.; Cournia, Z.; Klinakis, A. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbeshir, E.I.A. On the gum arabic to improve the thermal properties of Fe3O4 nanoparticles. AIP Adv. 2021, 11, 045224. [Google Scholar] [CrossRef]
- Horst, M.F.; Coral, D.F.; Van Raap, M.B.; Alvarez, M.; Lassalle, V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater. Sci. Eng. C 2017, 74, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Bohara, R.A.; Thorat, N.D.; Pawar, S.H. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016, 6, 43989–44012. [Google Scholar] [CrossRef]
- Cano, M.E.; Barrera, A.; Estrada, J.C.; Hernandez, A.; Cordova, T. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements. Rev. Sci. Instrum. 2011, 82, 114904. [Google Scholar] [CrossRef] [PubMed]
- Mazon, E.E.; Villa-Martínez, E.; Hernández-Sámano, A.; Córdova-Fraga, T.; Ibarra-Sánchez, J.J.; Calleja, H.A.; Leyva, J.A.; Barrera, A.; Estrada, J.C.; Paz, J.A.; et al. A high-resolution frequency variable experimental setup for studying ferrofluids used in magnetic hyperthermia. Rev. Sci. Instrum. 2017, 88, 084705. [Google Scholar] [CrossRef]
- Mazon, E.E.; Sámano, A.H.; Calleja, H.; Quintero, L.H.; Paz, J.A.; Cano, M.E. A frequency tuner for resonant inverters suitable for magnetic hyperthermia applications. Meas. Sci. Technol. 2017, 28, 095901. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Guivar, J.A.; Flores-Cano, D.A.; Caetano Passamani, E. Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: A critical review. Nanomaterials 2021, 11, 2310. [Google Scholar] [CrossRef] [PubMed]
- Schwertmann, R.M.C.U. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; John Wiley and Sons: Weinheim, Germany, 2008; pp. 1–162. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structures, Properties, Reactions, Occurrences and Uses, 1st ed.; VCH Verlagsgesellshaft GMBH: Weinheim, Germany, 1996; pp. 533–559. [Google Scholar] [CrossRef]
- Sadegh, H.; Helmi, H.; Hamdy, A.S.; Masjedi, A.; Dastjerdi, M.J.; Shahryari-ghoshekandi, R. A developed simple, facile, economic and fast technique for preparation of high quality Fe3O4 magnetic nanoparticles. Chem. Adv. Mater. 2016, 1, 27–32. Available online: http://issrpublishing.com/pubsys/index.php/cam/article/view/38/58 (accessed on 1 June 2021).
- Williams, D.N.; Gold, K.A.; Holoman, T.R.P.; Ehrman, S.H.; Wilson, O.C. Surface modification of magnetic nanoparticles using gum Arabic. J. Nanoparticles Res. 2006, 8, 749–753. [Google Scholar] [CrossRef]
- Roque, A.C.; Bicho, A.; Batalha, I.L.; Cardoso, A.S.; Hussain, A. Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. J. Biotechnol. 2009, 144, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 2010, 46, 2523–2558. [Google Scholar] [CrossRef] [Green Version]
- Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res. 2006, 67, 55–60. [Google Scholar] [CrossRef]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W.W. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012042. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.G.; Moon, M.J.; Lee, H.; Sasikala, A.R.; Kim, C.S.; Park, I.K.; Jeong, Y.Y. Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy. Carbohydr. Polym. 2015, 131, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, O.; Casillas, N.; Knauth, P.; Lopez, Z.; Virgen-Ortiz, A.; Lozano, O.; Delgado-Enciso, I.; Sámano, A.H.; Rosales, S.; Martinez-Ceseña, L.; et al. An easily prepared ferrofluid with high power absorption density and low cytotoxicity for biomedical applications. Mater. Chem. Phys. 2020, 245, 122752. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, F.; Cole, A.J.; Chertok, B.; David, A.E.; Wang, J.; Yang, V.C. Gum Arabic-Coated Magnetic Nanoparticles for potential Application in Simultaneous Magnetic Targeting and Tumor Imaging. AAPS J. 2009, 11, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzanares, D.; Ceña, V. Endocytosis: The Nanoparticle and Submicron Nancompounds Gateway into the Cell. Pharmaceutics 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.; Jeong, H.; Preihs, C.; Choi, J.S.; Shin, T.H.; Sessler, J.L.; Cheon, J. Double-Effector Nanoparticles: Synergistic Approach Apoptotic Hyperthermia. Angew. Chem. Int. 2012, 124, 12482–12485. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán-Rocha, D.A.; Córdova-Fraga, T.; Bernal-Alvarado, J.J.; López, Z.; Cholico, F.A.; Quintero, L.H.; Paz, J.A.; Cano, M.E. A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer. Materials 2022, 15, 788. https://doi.org/10.3390/ma15030788
Guzmán-Rocha DA, Córdova-Fraga T, Bernal-Alvarado JJ, López Z, Cholico FA, Quintero LH, Paz JA, Cano ME. A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer. Materials. 2022; 15(3):788. https://doi.org/10.3390/ma15030788
Chicago/Turabian StyleGuzmán-Rocha, Dulce A., Teodoro Córdova-Fraga, José J. Bernal-Alvarado, Zaira López, Francisco A. Cholico, Luis H. Quintero, José A. Paz, and Mario E. Cano. 2022. "A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer" Materials 15, no. 3: 788. https://doi.org/10.3390/ma15030788
APA StyleGuzmán-Rocha, D. A., Córdova-Fraga, T., Bernal-Alvarado, J. J., López, Z., Cholico, F. A., Quintero, L. H., Paz, J. A., & Cano, M. E. (2022). A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer. Materials, 15(3), 788. https://doi.org/10.3390/ma15030788