Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices
Abstract
:1. Introduction
2. Gate Dielectrics on (Al)GaN
3. Al2O3 for Insulated-Gate GaN Devices
Structure | Deposition Method | Measurement Method | EG (eV) | ∆EC (eV) | ∆EV (eV) | Ref. |
---|---|---|---|---|---|---|
Al2O3/GaN | ALD | C–V | - | - | 1.2 | [107] |
Al2O3/GaN | ALD | XPS and F–N plot | 6.7 | 2.2 | - | [108] |
Al2O3/GaN | ALD | XPS | 6.6 | 2.0 | 1.2 | [109] |
Al2O3/GaN | ALD | IPE and C–V | - | 2.2 | - | [110] |
Al2O3/GaN | PEALD | XPS and UPS | 6.7 | 2.1 | 1.2 | [111] |
Al2O3/GaN | PEALD | XPS and UPS | - | 1.3 | 1.8 | [100] |
Al2O3/GaN | CVD | XPS and XAS | 7.6 | 2.7 | 1.5 | [99] |
Al2O3/Al0.3Ga0.7N | MBD + ECR plasma oxidation | XPS | 7.0 | 2.1 | 0.8 | [53,75] |
Al2O3/Al0.25Ga0.75N | ALD | XPS | 6.9 | 1.8 | 1.2 | [112] |
Al2O3/Al0.25Ga0.75N | ALD | XPS | 6.7 | 1.8 | 0.9 | [26] |
3.1. Al2O3/(Al)GaN Structures
3.2. Al2O3-Gated MIS-HEMTs
3.3. Modified Al2O3 Gate Dielectrics
4. Nitride-Based Dielectrics
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R. The 2018 GaN Power Electronics Roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Hassan, A.; Savaria, Y.; Sawan, M. GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review. IEEE Access 2018, 6, 78790–78802. [Google Scholar] [CrossRef]
- Okumura, H. Present Status and Future Prospect of Widegap Semiconductor High-Power Devices. Jpn. J. Appl. Phys. 2006, 45, 7565. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Dimitrov, R.; Stutzmann, M.; Foutz, B.E.; Murphy, M.J.; Smart, J.A.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Chumbes, M.; et al. Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices. Phys. Status Solidi B 1999, 216, 381–389. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N-and Ga-Face AlGaN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Sierakowski, A.J.; Schaff, W.J.; Eastman, L.F.; et al. Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Patti, A.; Saggio, M. Challenges for Energy Efficient Wide Band Gap Semiconductor Power Devices. Phys. Status Solidi A 2014, 211, 2063–2071. [Google Scholar] [CrossRef]
- Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Trescases, O.; Murray, S.K.; Jiang, W.L.; Zaman, M.S. GaN Power ICs: Reviewing Strengths, Gaps, and Future Directions. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 27.4.1–27.4.4. [Google Scholar] [CrossRef]
- Hsu, L.-H.; Lai, Y.-Y.; Tu, P.-T.; Langpoklakpam, C.; Chang, Y.-T.; Huang, Y.-W.; Lee, W.-C.; Tzou, A.-J.; Cheng, Y.-J.; Lin, C.-H.; et al. Development of GaN HEMTs Fabricated on Silicon, Silicon-on-Insulator, and Engineered Substrates and the Heterogeneous Integration. Micromachines 2021, 12, 1159. [Google Scholar] [CrossRef]
- Chowdhury, S.; Swenson, B.L.; Mishra, U.K. Enhancement and Depletion Mode AlGaN/GaN CAVET with Mg-Ion-Implanted GaN as Current Blocking Layer. IEEE Electron Device Lett. 2008, 29, 543–545. [Google Scholar] [CrossRef]
- Yeluri, R.; Lu, J.; Hurni, C.A.; Browne, D.A.; Chowdhury, S.; Keller, S.; Speck, J.S.; Mishra, U.K. Design, Fabrication, and Performance Analysis of GaN Vertical Electron Transistors with a Buried p/n Junction. Appl. Phys. Lett. 2015, 106, 183502. [Google Scholar] [CrossRef]
- Ji, D.; Agarwal, A.; Li, H.; Li, W.; Keller, S.; Chowdhury, S. 880 V/2.7 mΩ·cm2 MIS Gate Trench CAVET on Bulk GaN Substrates. IEEE Electron Device Lett. 2018, 39, 863–865. [Google Scholar] [CrossRef]
- Tang, Y.; Shinohara, K.; Regan, D.; Corrion, A.; Brown, D.; Wong, J.; Schmitz, A.; Fung, H.; Kim, S.; Micovic, M. Ultrahigh-Speed GaN High-Electron-Mobility Transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 2015, 36, 549–551. [Google Scholar] [CrossRef]
- Shinohara, K.; Regan, D.C.; Tang, Y.; Corrion, A.L.; Brown, D.F.; Wong, J.C.; Robinson, J.F.; Fung, H.H.; Schmitz, A.; Oh, T.C.; et al. Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications. IEEE Trans. Electron Devices 2013, 60, 2982–2996. [Google Scholar] [CrossRef]
- Lv, Y.; Song, X.; Guo, H.; Fang, Y.; Feng, Z. High-Frequency AlGaN/GaN HFETs with fT/fmax of 149/263 GHz for D-Band PA Applications. Electron. Lett. 2016, 52, 1340–1342. [Google Scholar] [CrossRef]
- Lee, D.S.; Laboutin, O.; Cao, Y.; Johnson, W.; Beam, E.; Ketterson, A.; Schuette, M.; Saunier, P.; Palacios, T. Impact of Al2O3 Passivation Thickness in Highly Scaled GaN HEMTs. IEEE Electron Device Lett. 2012, 33, 976–978. [Google Scholar] [CrossRef]
- Chung, J.W.; Kim, T.-W.; Palacios, T. Advanced Gate Technologies for State-of-the-Art fT in AlGaN/GaN HEMTs. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 30–32. [Google Scholar] [CrossRef]
- Hashizume, T.; Kotani, J.; Hasegawa, H. Leakage Mechanism in GaN and AlGaN Schottky Interfaces. Appl. Phys. Lett. 2004, 84, 4884–4886. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Iucolano, F.; Roccaforte, F. Review of Technology for Normally-off HEMTs with p-GaN Gate. Mater. Sci. Semicond. Process. 2018, 78, 96–106. [Google Scholar] [CrossRef]
- Lidow, A.; De Rooij, M.; Strydom, J.; Reusch, D.; Glaser, J. GaN Transistors for Efficient Power Conversion; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kanamura, M.; Kikkawa, T.; Iwai, T.; Imanishi, K.; Kubo, T.; Joshin, K. An over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT Power Amplifier for Wireless Base Station Applications. In Proceedings of the IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest, Washington, DC, USA, 5 December 2005; pp. 572–575. [Google Scholar] [CrossRef]
- Ye, P.D.; Yang, B.; Ng, K.K.; Bude, J.; Wilk, G.D.; Halder, S.; Hwang, J.C.M. GaN Metal-Oxide-Semiconductor High-Electron-Mobility-Transistor with Atomic Layer Deposited Al2O3 as Gate Dielectric. Appl. Phys. Lett. 2005, 86, 063501. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Hu, X.; Sumin, G.; Lunev, A.; Yang, J.; Gaska, R.; Shur, M.S. AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor. IEEE Electron Device Lett. 2000, 21, 63–65. [Google Scholar] [CrossRef]
- Chen, K.J.; Yang, S.; Liu, S.; Liu, C.; Hua, M. Toward Reliable MIS-and MOS-Gate Structures for GaN Lateral Power Devices. Phys. Status Solidi A 2016, 213, 861–867. [Google Scholar] [CrossRef]
- Mizue, C.; Hori, Y.; Miczek, M.; Hashizume, T. Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface. Jpn. J. Appl. Phys. 2011, 50, 021001. [Google Scholar] [CrossRef]
- Hori, Y.; Yatabe, Z.; Hashizume, T. Characterization of Interface States in Al2O3/AlGaN/GaN Structures for Improved Performance of High-Electron-Mobility Transistors. J. Appl. Phys. 2013, 114, 244503. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yu, K.; Jiang, H.; Zhang, A.; Lau, K.M. Study of Interface Traps in AlGaN/GaN MISHEMTs Using LPCVD SiNx as Gate Dielectric. IEEE Trans. Electron Devices 2017, 64, 824–831. [Google Scholar] [CrossRef]
- Hashizume, T.; Nishiguchi, K.; Kaneki, S.; Kuzmik, J.; Yatabe, Z. State of the Art on Gate Insulation and Surface Passivation for GaN-Based Power HEMTs. Mater. Sci. Semicond. Process. 2018, 78, 85–95. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Bisi, D.; Rossetto, I.; Cester, A.; Mishra, U.K.; Zanoni, E. Trapping Phenomena in AlGaN/GaN HEMTs: A Study Based on Pulsed and Transient Measurements. Semicond. Sci. Technol. 2013, 28, 074021. [Google Scholar] [CrossRef]
- Szabó, N.; Wachowiak, A.; Winzer, A.; Ocker, J.; Gärtner, J.; Hentschel, R.; Schmid, A.; Mikolajick, T. High-k/GaN Interface Engineering toward AlGaN/GaN MIS-HEMT with Improved Vth Stability. J. Vac. Sci. Technol. B 2017, 35, 01A102. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, S.; Jiang, Q.; Tang, Z.; Li, B.; Chen, K.J. Characterization of Vt-Instability in Enhancement-Mode Al2O3-AlGaN/GaN MIS-HEMTs. Phys. Status Solidi C 2013, 10, 1397–1400. [Google Scholar] [CrossRef]
- Zhu, J.; Hou, B.; Chen, L.; Zhu, Q.; Yang, L.; Zhou, X.; Zhang, P.; Ma, X.; Hao, Y. Threshold Voltage Shift and Interface/Border Trapping Mechanism in Al2O3/AlGaN/GaN MOS-HEMTs. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; p. P-WB. [Google Scholar] [CrossRef]
- Winzer, A.; Schuster, M.; Hentschel, R.; Ocker, J.; Merkel, U.; Jahn, A.; Wachowiak, A.; Mikolajick, T. Analysis of Threshold Voltage Instability in AlGaN/GaN MISHEMTs by Forward Gate Voltage Stress Pulses. Phys. Status Solidi A 2016, 213, 1246–1251. [Google Scholar] [CrossRef]
- Huang, S.; Yang, S.; Roberts, J.; Chen, K.J. Threshold Voltage Instability in Al2O3/GaN/AlGaN/GaN Metal-Insulator–Semiconductor High-Electron Mobility Transistors. Jpn. J. Appl. Phys. 2011, 50, 110202. [Google Scholar] [CrossRef]
- Lagger, P.; Ostermaier, C.; Pobegen, G.; Pogany, D. Towards Understanding the Origin of Threshold Voltage Instability of AlGaN/GaN MIS-HEMTs. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 13.1.1–13.1.4. [Google Scholar] [CrossRef]
- Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.; et al. Role of the Dielectric for the Charging Dynamics of the Dielectric/Barrier Interface in AlGaN/GaN Based Metal-Insulator-Semiconductor Structures under Forward Gate Bias Stress. Appl. Phys. Lett. 2014, 105, 033512. [Google Scholar] [CrossRef]
- Nishiguchi, K.; Kaneki, S.; Ozaki, S.; Hashizume, T. Current Linearity and Operation Stability in Al2O3-Gate AlGaN/GaN MOS High Electron Mobility Transistors. Jpn. J. Appl. Phys. 2017, 56, 101001. [Google Scholar] [CrossRef]
- Huang, W.; Khan, T.; Chow, T.P. Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates. In Proceedings of the 2006 IEEE International Symposium on Power Semiconductor Devices and IC’s, Naples, Italy, 4–8 June 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Oka, T.; Ueno, Y.; Ina, T.; Hasegawa, K. Vertical GaN-Based Trench Metal Oxide Semiconductor Field-Effect Transistors on a Free-Standing GaN Substrate with Blocking Voltage of 1.6 kV. Appl. Phys. Express 2014, 7, 021002. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.; Gao, X.; Palacios, T. High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates. IEEE Electron Device Lett. 2017, 38, 509–512. [Google Scholar] [CrossRef]
- Hua, M.; Wei, J.; Tang, G.; Zhang, Z.; Qian, Q.; Cai, X.; Wang, N.; Chen, K.J. Normally-off LPCVD-SiNx/GaN MIS-FET with Crystalline Oxidation Interlayer. IEEE Electron Device Lett. 2017, 38, 929–932. [Google Scholar] [CrossRef]
- Mukherjee, K.; De Santi, C.; Borga, M.; Geens, K.; You, S.; Bakeroot, B.; Decoutere, S.; Diehle, P.; Hübner, S.; Altmann, F.; et al. Challenges and Perspectives for Vertical GaN-on-Si Trench MOS Reliability: From Leakage Current Analysis to Gate Stack Optimization. Materials 2021, 14, 2316. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, R.; Wachowiak, A.; Großer, A.; Kotzea, S.; Debald, A.; Kalisch, H.; Vescan, A.; Jahn, A.; Schmult, S.; Mikolajick, T. Extraction of the Active Acceptor Concentration in (Pseudo-) Vertical GaN MOSFETs Using the Body-Bias Effect. Microelectron. J. 2019, 91, 42–45. [Google Scholar] [CrossRef]
- Mukherjee, K.; De Santi, C.; Borga, M.; You, S.; Geens, K.; Bakeroot, B.; Decoutere, S.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Use of Bilayer Gate Insulator in GaN-on-Si Vertical Trench MOSFETs: Impact on Performance and Reliability. Materials 2020, 13, 4740. [Google Scholar] [CrossRef]
- Pérez-Tomás, A.; Placidi, M.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J.C.; Constant, A.; Godignon, P.; Millán, J. GaN Transistor Characteristics at Elevated Temperatures. J. Appl. Phys. 2009, 106, 074519. [Google Scholar] [CrossRef]
- Pérez-Tomás, A.; Placidi, M.; Perpiñà, X.; Constant, A.; Godignon, P.; Jordà, X.; Brosselard, P.; Millán, J. GaN Metal-Oxide-Semiconductor Field-Effect Transistor Inversion Channel Mobility Modeling. J. Appl. Phys. 2009, 105, 114510. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Zhang, Z.; Wei, J.; Lei, J.; Tang, G.; Fu, K.; Cai, Y.; Zhang, B.; Chen, K.J. Integration of LPCVD-SiNx Gate Dielectric with Recessed-Gate E-Mode GaN MIS-FETs: Toward High Performance, High Stability and Long TDDB Lifetime. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 10–14. [Google Scholar] [CrossRef]
- Yatabe, Z.; Asubar, J.T.; Hashizume, T. Insulated Gate and Surface Passivation Structures for GaN-Based Power Transistors. J. Phys. D Appl. Phys. 2016, 49, 393001. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Vivona, M.; Nigro, R.L.; Giannazzo, F.; Patti, A.; Saggio, M. Recent Advances on Dielectrics Technology for SiC and GaN Power Devices. Appl. Surf. Sci. 2014, 301, 9–18. [Google Scholar] [CrossRef]
- Eller, B.S.; Yang, J.; Nemanich, R.J. Electronic Surface and Dielectric Interface States on GaN and AlGaN. J. Vac. Sci. Technol. A 2013, 31, 050807. [Google Scholar] [CrossRef]
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Hashizume, T.; Ootomo, S.; Hasegawa, H. Suppression of Current Collapse in Insulated Gate AlGaN/GaN Heterostructure Field-Effect Transistors Using Ultrathin Al2O3 Dielectric. Appl. Phys. Lett. 2003, 83, 2952–2954. [Google Scholar] [CrossRef] [Green Version]
- Green, B.M.; Chu, K.K.; Chumbes, E.M.; Smart, J.A.; Shealy, J.R.; Eastman, L.F. The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–270. [Google Scholar] [CrossRef]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Robertson, J.; Falabretti, B. Band Offsets of High K Gate Oxides on III-V Semiconductors. J. Appl. Phys. 2006, 100, 014111. [Google Scholar] [CrossRef]
- Reddy, B.P.K.; Teja, K.B.R.; Kandpal, K. Investigation on High-κ Dielectric for Low Leakage AlGaN/GaN MIS-HEMT Device, Using Material Selection Methodologies. Semiconductors 2018, 52, 420–430. [Google Scholar] [CrossRef]
- Kambayashi, H.; Satoh, Y.; Ootomo, S.; Kokawa, T.; Nomura, T.; Kato, S.; Chow, T.P. Over 100 A Operation Normally-off AlGaN/GaN Hybrid MOS-HFET on Si Substrate with High-Breakdown Voltage. Solid-State Electron. 2010, 54, 660–664. [Google Scholar] [CrossRef]
- Lee, J.-G.; Kim, H.-S.; Seo, K.-S.; Cho, C.-H.; Cha, H.-Y. High Quality PECVD SiO2 Process for Recessed MOS-Gate of AlGaN/GaN-on-Si Metal–Oxide–Semiconductor Heterostructure Field-Effect Transistors. Solid-State Electron. 2016, 122, 32–36. [Google Scholar] [CrossRef]
- Liu, C.; Chor, E.F.; Tan, L.S. Investigations of HfO2/AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors. Appl. Phys. Lett. 2006, 88, 173504. [Google Scholar] [CrossRef]
- Liu, C.; Chor, E.F.; Tan, L.S. Enhanced Device Performance of AlGaN/GaN HEMTs Using HfO2 High-k Dielectric for Surface Passivation and Gate Oxide. Semicond. Sci. Technol. 2007, 22, 522. [Google Scholar] [CrossRef]
- Shi, J.; Eastman, L.F.; Xin, X.; Pophristic, M. High Performance AlGaN/GaN Power Switch with HfO2 Insulation. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef]
- Ye, G.; Wang, H.; Arulkumaran, S.; Ng, G.I.; Hofstetter, R.; Li, Y.; Anand, M.J.; Ang, K.S.; Maung, Y.K.T.; Foo, S.C. Atomic Layer Deposition of ZrO2 as Gate Dielectrics for AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors on Silicon. Appl. Phys. Lett. 2013, 103, 142109. [Google Scholar] [CrossRef]
- Anderson, T.J.; Wheeler, V.D.; Shahin, D.I.; Tadjer, M.J.; Koehler, A.D.; Hobart, K.D.; Christou, A.; Kub, F.J.; Eddy, C.R., Jr. Enhancement Mode AlGaN/GaN MOS High-Electron-Mobility Transistors with ZrO2 Gate Dielectric Deposited by Atomic Layer Deposition. Appl. Phys. Express 2016, 9, 071003. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, C.; Ng, K.W.; Tang, C.W.; Lau, K.M. High-Performance AlGaN/GaN/Si Power MOSHEMTs with ZrO2 Gate Dielectric. IEEE Trans. Electron Devices 2018, 65, 5337–5342. [Google Scholar] [CrossRef]
- Kikkawa, T.; Makiyama, K.; Ohki, T.; Kanamura, M.; Imanishi, K.; Hara, N.; Joshin, K. High Performance and High Reliability AlGaN/GaN HEMTs. Phys. Status Solidi A 2009, 206, 1135–1144. [Google Scholar] [CrossRef]
- Deen, D.A.; Storm, D.F.; Bass, R.; Meyer, D.J.; Katzer, D.S.; Binari, S.C.; Lacis, J.W.; Gougousi, T. Atomic Layer Deposited Ta2O5 Gate Insulation for Enhancing Breakdown Voltage of AlN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2011, 98, 023506. [Google Scholar] [CrossRef] [Green Version]
- Fiorenza, P.; Greco, G.; Fisichella, G.; Roccaforte, F.; Malandrino, G.; Lo Nigro, R. High Permittivity Cerium Oxide Thin Films on AlGaN/GaN Heterostructures. Appl. Phys. Lett. 2013, 103, 112905. [Google Scholar] [CrossRef]
- Chiu, Y.S.; Liao, J.T.; Lin, Y.C.; Liu, S.C.; Lin, T.M.; Iwai, H.; Kakushima, K.; Chang, E.Y. High-Permitivity Cerium Oxide Prepared by Molecular Beam Deposition as Gate Dielectric and Passivation Layer and Applied to AlGaN/GaN Power High Electron Mobility Transistor Devices. Jpn. J. Appl. Phys. 2016, 55, 051001. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Shih, W.-C.; Lin, Y.-C.; Hsu, H.-T.; Hsu, H.-H.; Huang, Y.-X.; Lin, T.-W.; Wu, C.-H.; Wu, W.-H.; Maa, J.-S.; et al. Improved Linearity and Reliability in GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors Using Nanolaminate La2O3/SiO2 Gate Dielectric. Jpn. J. Appl. Phys. 2016, 55, 04EG04. [Google Scholar] [CrossRef]
- Hansen, P.J.; Vaithyanathan, V.; Wu, Y.; Mates, T.; Heikman, S.; Mishra, U.K.; York, R.A.; Schlom, D.G.; Speck, J.S. Rutile Films Grown by Molecular Beam Epitaxy on GaN and AlGaN/GaN. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Rawat, A.; Meer, M.; kumar Surana, V.; Bhardwaj, N.; Pendem, V.; Garigapati, N.S.; Yadav, Y.; Ganguly, S.; Saha, D. Thermally Grown TiO2 and Al2O3 for GaN-Based MOS-HEMTs. IEEE Trans. Electron Devices 2018, 65, 3725–3731. [Google Scholar] [CrossRef]
- Yatabe, Z.; Hori, Y.; Ma, W.-C.; Asubar, J.T.; Akazawa, M.; Sato, T.; Hashizume, T. Characterization of Electronic States at Insulator/(Al)GaN Interfaces for Improved Insulated Gate and Surface Passivation Structures of GaN-Based Transistors. Jpn. J. Appl. Phys. 2014, 53, 100213. [Google Scholar] [CrossRef] [Green Version]
- Deen, D.; Storm, D.; Meyer, D.; Katzer, D.S.; Bass, R.; Binari, S.; Gougousi, T. AlN/GaN HEMTs with High-κ ALD HfO2 or Ta2O5 Gate Insulation. Phys. Status Solidi C 2011, 8, 2420–2423. [Google Scholar] [CrossRef]
- Hashizume, T.; Ootomo, S.; Inagaki, T.; Hasegawa, H. Surface Passivation of GaN and GaN/AlGaN Heterostructures by Dielectric Films and Its Application to Insulated-Gate Heterostructure Transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2003, 21, 1828–1838. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, M.; Akita, M.; Ohno, Y.; Kishimoto, S.; Maezawa, K.; Mizutani, T. AlGaN/GaN Heterostructure Metal-Insulator-Semiconductor High-Electron-Mobility Transistors with Si3N4 Gate Insulator. Jpn. J. Appl. Phys. 2003, 42, 2278. [Google Scholar] [CrossRef]
- Lee, C.-T.; Chen, H.-W.; Lee, H.-Y. Metal–Oxide–Semiconductor Devices Using Ga2O3 Dielectrics on n-type GaN. Appl. Phys. Lett. 2003, 82, 4304–4306. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, C.; Chen, Y.; Lu, X.; Tang, C.W.; Lau, K.M. Investigation of in Situ SiN as Gate Dielectric and Surface Passivation for GaN MISHEMTs. IEEE Trans. Electron Devices 2017, 64, 832–839. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S.; Tang, Z.; Jiang, Q.; Liu, C.; Wang, M.; Chen, K.J. Al2O3/AlN/GaN MOS-Channel-HEMTs with an AlN Interfacial Layer. IEEE Electron Device Lett. 2014, 35, 723–725. [Google Scholar] [CrossRef]
- Tsurumi, N.; Ueno, H.; Murata, T.; Ishida, H.; Uemoto, Y.; Ueda, T.; Inoue, K.; Tanaka, T. AlN Passivation over AlGaN/GaN HFETs for Surface Heat Spreading. IEEE Trans. Electron Devices 2010, 57, 980–985. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, Q.; Yang, S.; Zhou, C.; Chen, K.J. Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film. IEEE Electron Device Lett. 2012, 33, 516–518. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Raineri, V.; Malandrino, G.; Lo Nigro, R. Epitaxial NiO Gate Dielectric on AlGaN/GaN Heterostructures. Appl. Phys. Lett. 2012, 100, 063511. [Google Scholar] [CrossRef]
- Fiorenza, P.; Greco, G.; Giannazzo, F.; Lo Nigro, R.; Roccaforte, F. Poole-Frenkel Emission in Epitaxial Nickel Oxide on AlGaN/GaN Heterostructures. Appl. Phys. Lett. 2012, 101, 172901. [Google Scholar] [CrossRef]
- Mehandru, R.; Luo, B.; Kim, J.; Ren, F.; Gila, B.P.; Onstine, A.H.; Abernathy, C.R.; Pearton, S.J.; Gotthold, D.; Birkhahn, R.; et al. AlGaN/GaN Metal–Oxide–Semiconductor High Electron Mobility Transistors Using Sc2O3 as the Gate Oxide and Surface Passivation. Appl. Phys. Lett. 2003, 82, 2530–2532. [Google Scholar] [CrossRef]
- Luo, B.; Johnson, J.W.; Gila, B.; Onstine, A.; Abernathy, C.R.; Ren, F.; Pearton, S.J.; Baca, A.G.; Dabiran, A.M.; Wowchack, A.M.; et al. Surface Passivation of AlGaN/GaN HEMTs Using MBE-Grown MgO or Sc2O3. Solid-State Electron. 2002, 46, 467–476. [Google Scholar] [CrossRef]
- Polyakov, A.Y.; Smirnov, N.B.; Gila, B.P.; Hlad, M.; Gerger, A.P.; Abernathy, C.R.; Pearton, S.J. Studies of Interface States in Sc2O3/GaN, MgO/GaN, and MgScO/GaN Structures. J. Electrochem. Soc. 2006, 154, H115. [Google Scholar] [CrossRef]
- Wang, X.; Saadat, O.I.; Xi, B.; Lou, X.; Molnar, R.J.; Palacios, T.; Gordon, R.G. Atomic Layer Deposition of Sc2O3 for Passivating AlGaN/GaN High Electron Mobility Transistor Devices. Appl. Phys. Lett. 2012, 101, 232109. [Google Scholar] [CrossRef]
- Balachander, K.; Arulkumaran, S.; Sano, Y.; Egawa, T.; Baskar, K. Fabrication of AlGaN/GaN Double-Insulator Metal–Oxide–Semiconductor High-Electron-Mobility Transistors Using SiO2 and SiN as Gate Insulators. Phys. Status Solidi A 2005, 202, R32–R34. [Google Scholar] [CrossRef]
- Anand, M.J.; Ng, G.I.; Vicknesh, S.; Arulkumaran, S.; Ranjan, K. Reduction of Current Collapse in AlGaN/GaN MISHEMT with Bilayer SiN/Al2O3 Dielectric Gate Stack. Phys. Status Solidi C 2013, 10, 1421–1425. [Google Scholar] [CrossRef]
- Colon, A.; Shi, J. High-κ Insulating Materials for AlGaN/GaN Metal Insulator Semiconductor Heterojunction Field Effect Transistors. Solid-State Electron. 2014, 99, 25–30. [Google Scholar] [CrossRef]
- Geng, K.; Chen, D.; Zhou, Q.; Wang, H. AlGaN/GaN MIS-HEMT with PECVD SiNx, SiON, SiO2 as Gate Dielectric and Passivation Layer. Electronics 2018, 7, 416. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Huang, H.; Wang, R.; Liu, Y.; Sun, N.; Li, F.; Tao, P.; Ren, Y.; Song, S.; Wang, H.; et al. Effects of SiON/III-Nitride Interface Properties on Device Performances of GaN-Based Power Field-Effect Transistors. J. Phys. D Appl. Phys. 2020, 54, 025109. [Google Scholar] [CrossRef]
- Yang, S.; Huang, S.; Schnee, M.; Zhao, Q.-T.; Schubert, J.; Chen, K.J. Fabrication and Characterization of Enhancement-Mode High-k LaLuO3-AlGaN/GaN MIS-HEMTs. IEEE Trans. Electron Devices 2013, 60, 3040–3046. [Google Scholar] [CrossRef]
- Park, K.-Y.; Cho, H.-I.; Lee, J.-H.; Bae, S.-B.; Jeon, C.-M.; Lee, J.-L.; Kim, D.-Y.; Lee, C.-S.; Lee, J.-H. Fabrication of AlGaN/GaN MIS-HFET Using an Al2O3 High k Dielectric. Phys. Status Solidi C 2003, 2351–2354. [Google Scholar] [CrossRef]
- Yue, Y.-Z.; Hao, Y.; Feng, Q.; Zhang, J.-C.; Ma, X.-H.; Ni, J.-Y. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition. Chin. Phys. Lett. 2007, 24, 2419. [Google Scholar] [CrossRef]
- Afanas’ Ev, V.V.; Stesmans, A.; Mrstik, B.J.; Zhao, C. Impact of Annealing-Induced Compaction on Electronic Properties of Atomic-Layer-Deposited Al2O3. Appl. Phys. Lett. 2002, 81, 1678–1680. [Google Scholar] [CrossRef]
- Afanas’ Ev, V.V.; Houssa, M.; Stesmans, A.; Merckling, C.; Schram, T.; Kittl, J.A. Influence of Al2O3 Crystallization on Band Offsets at Interfaces with Si and TiNx. Appl. Phys. Lett. 2011, 99, 072103. [Google Scholar] [CrossRef]
- Momida, H.; Hamada, T.; Takagi, Y.; Yamamoto, T.; Uda, T.; Ohno, T. Theoretical Study on Dielectric Response of Amorphous Alumina. Phys. Rev. B 2006, 73, 054108. [Google Scholar] [CrossRef]
- Toyoda, S.; Shinohara, T.; Kumigashira, H.; Oshima, M.; Kato, Y. Significant Increase in Conduction Band Discontinuity due to Solid Phase Epitaxy of Al2O3 Gate Insulator Films on GaN Semiconductor. Appl. Phys. Lett. 2012, 101, 231607. [Google Scholar] [CrossRef]
- Yang, J.; Eller, B.S.; Zhu, C.; England, C.; Nemanich, R.J. Comparative Band Alignment of Plasma-Enhanced Atomic Layer Deposited High-k Dielectrics on Gallium Nitride. J. Appl. Phys. 2012, 112, 053710. [Google Scholar] [CrossRef]
- Costina, I.; Franchy, R. Band Gap of Amorphous and Well-Ordered Al2O3 on Ni3Al(100). Appl. Phys. Lett. 2001, 78, 4139–4141. [Google Scholar] [CrossRef] [Green Version]
- French, R.H. Electronic Band Structure of Al2O3, with Comparison to AlON and AIN. J. Am. Ceram. Soc. 1990, 73, 477–489. [Google Scholar] [CrossRef]
- Maeda, N.; Wang, C.; Enoki, T.; Makimoto, T.; Tawara, T. High Drain Current Density and Reduced Gate Leakage Current in Channel-Doped AlGaN/GaN Heterostructure Field-Effect Transistors with Al2O3/Si3N4 Gate Insulator. Appl. Phys. Lett. 2005, 87, 073504. [Google Scholar] [CrossRef]
- Gregušová, D.; Stoklas, R.; Čičo, K.; Heidelberger, G.; Marso, M.; Novák, J.; Kordoš, P. Characterization of AlGaN/GaN MOSHFETs with Al2O3 as Gate Oxide. Phys. Status Solidi C 2007, 4, 2720–2723. [Google Scholar] [CrossRef]
- Ťapajna, M.; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Brunner, F.; Cho, E.-M.; Kuzmík, J. Bulk and Interface Trapping in the Gate Dielectric of GaN Based Metal-Oxide-Semiconductor High-Electron-Mobility Transistors. Appl. Phys. Lett. 2013, 102, 243509. [Google Scholar] [CrossRef]
- Ťapajna, M.; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Brunner, F.; Cho, E.-M.; Hashizume, T.; Kuzmík, J. Impact of GaN Cap on Charges in Al2O3/(GaN/)AlGaN/GaN Metal-Oxide-Semiconductor Heterostructures Analyzed by Means of Capacitance Measurements and Simulations. J. Appl. Phys. 2014, 116, 104501. [Google Scholar] [CrossRef]
- Esposto, M.; Krishnamoorthy, S.; Nath, D.N.; Bajaj, S.; Hung, T.-H.; Rajan, S. Electrical Properties of Atomic Layer Deposited Aluminum Oxide on Gallium Nitride. Appl. Phys. Lett. 2011, 99, 133503. [Google Scholar] [CrossRef] [Green Version]
- Hori, Y.; Mizue, C.; Hashizume, T. Process Conditions for Improvement of Electrical Properties of Al2O3/n-GaN Structures Prepared by Atomic Layer Deposition. Jpn. J. Appl. Phys. 2010, 49, 080201. [Google Scholar] [CrossRef]
- Suri, R. Investigation of MOS Interfaces with Atomic-Layer-Deposited High-k Gate Dielectrics on III-V Semiconductors. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2010. [Google Scholar]
- Zhang, Z.; Jackson, C.M.; Arehart, A.R.; McSkimming, B.; Speck, J.S.; Ringel, S.A. Direct Determination of Energy Band Alignments of Ni/Al2O3/GaN MOS Structures Using Internal Photoemission Spectroscopy. J. Electron. Mater. 2014, 43, 828–832. [Google Scholar] [CrossRef]
- Yang, J.; Eller, B.S.; Nemanich, R.J. Surface Band Bending and Band Alignment of Plasma Enhanced Atomic Layer Deposited Dielectrics on Ga- and N-face Gallium Nitride. J. Appl. Phys. 2014, 116, 123702. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Cheng, L.; McDonnell, S.; Azcatl, A.; Zhu, H.; Kim, J.; Wallace, R.M. A Comparative Study of Atomic Layer Deposition of Al2O3 and HfO2 on AlGaN/GaN. J. Mater.Sci. Mater. Electron. 2015, 26, 4638–4643. [Google Scholar] [CrossRef]
- Winzer, A.; Szabó, N.; Ocker, J.; Hentschel, R.; Schuster, M.; Schubert, F.; Gärtner, J.; Wachowiak, A.; Mikolajick, T. Detailed Analysis of Oxide Related Charges and Metal-Oxide Barriers in Terrace Etched Al2O3 and HfO2 on AlGaN/GaN Heterostructure Capacitors. J. Appl. Phys. 2015, 118, 124106. [Google Scholar] [CrossRef]
- Hashizume, T.; Kaneki, S.; Oyobiki, T.; Ando, Y.; Sasaki, S.; Nishiguchi, K. Effects of Postmetallization Annealing on Interface Properties of Al2O3/GaN Structures. Appl. Phys. Express 2018, 11, 124102. [Google Scholar] [CrossRef]
- Kaneki, S.; Ohira, J.; Toiya, S.; Yatabe, Z.; Asubar, J.T.; Hashizume, T. Highly-Stable and Low-State-Density Al2O3/GaN Interfaces Using Epitaxial n-GaN Layers Grown on Free-Standing GaN Substrates. Appl. Phys. Lett. 2016, 109, 162104. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Chobpattana, V.; McSkimming, B.M.; Stemmer, S. Fixed Charge in High-k/GaN Metal-Oxide-Semiconductor Capacitor Structures. Appl. Phys. Lett. 2012, 101, 102905. [Google Scholar] [CrossRef] [Green Version]
- Uedono, A.; Nabatame, T.; Egger, W.; Koschine, T.; Hugenschmidt, C.; Dickmann, M.; Sumiya, M.; Ishibashi, S. Vacancy-Type Defects in Al2O3/GaN Structure Probed by Monoenergetic Positron Beams. J. Appl. Phys. 2018, 123, 155302. [Google Scholar] [CrossRef]
- Kubo, T.; Miyoshi, M.; Egawa, T. Post-Deposition Annealing Effects on the Insulator/Semiconductor Interfaces of Al2O3/AlGaN/GaN Structures on Si Substrates. Semicond. Sci. Technol. 2017, 32, 065012. [Google Scholar] [CrossRef]
- Hung, T.-H.; Krishnamoorthy, S.; Esposto, M.; Neelim Nath, D.; Sung Park, P.; Rajan, S. Interface Charge Engineering at Atomic Layer Deposited Dielectric/III-Nitride Interfaces. Appl. Phys. Lett. 2013, 102, 072105. [Google Scholar] [CrossRef]
- Zhou, H.; Ng, G.I.; Liu, Z.H.; Arulkumaran, S. Improved Device Performance by Post-Oxide Annealing in Atomic-Layer-Deposited Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High Electron Mobility Transistor on Si. Appl. Phys. Express 2011, 4, 104102. [Google Scholar] [CrossRef]
- Nakazawa, S.; Shih, H.-A.; Tsurumi, N.; Anda, Y.; Hatsuda, T.; Ueda, T.; Kimoto, T.; Hashizume, T. Effects of Post-Deposition Annealing in O2 on Threshold Voltage of Al2O3/AlGaN/GaN MOS Heterojunction Field-Effect Transistors. Jpn. J. Appl. Phys. 2019, 58, 030902. [Google Scholar] [CrossRef]
- Choi, M.; Lyons, J.L.; Janotti, A.; Van de Walle, C.G. Impact of Native Defects in High-k Dielectric Oxides on GaN/Oxide Metal–Oxide–Semiconductor Devices. Phys. Status Solidi B 2013, 250, 787–791. [Google Scholar] [CrossRef]
- Weber, J.R.; Janotti, A.; Van de Walle, C.G. Native Defects in Al2O3 and their Impact on III-V/Al2O3 Metal-Oxide-Semiconductor-Based Devices. J. Appl. Phys. 2011, 109, 033715. [Google Scholar] [CrossRef]
- Liu, D.; Clark, S.J.; Robertson, J. Oxygen Vacancy Levels and Electron Transport in Al2O3. Appl. Phys. Lett. 2010, 96, 032905. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.; Weber, J.R.; Long, R.D.; Hurley, P.K.; Van de Walle, C.G.; McIntyre, P.C. Origin and Passivation of Fixed Charge in Atomic Layer Deposited Aluminum Oxide Gate Insulators on Chemically Treated InGaAs Substrates. Appl. Phys. Lett. 2010, 96, 152908. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B.; Kwon, D.R.; Chakrabarti, K.; Lee, C.; Oh, K.Y.; Lee, J.H. Improvement in Al2O3 Dielectric Behavior by Using Ozone as an Oxidant for the Atomic Layer Deposition Technique. J. Appl. Phys. 2002, 92, 6739–6742. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Wei, K.; Liu, G.; Wang, X.; Sun, B.; Yang, X.; Shen, B.; Liu, C.; Liu, S.; et al. O3-Sourced Atomic Layer Deposition of High Quality Al2O3 Gate Dielectric for Normally-off GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. Appl. Phys. Lett. 2015, 106, 033507. [Google Scholar] [CrossRef]
- Ťapajna, M.; Válik, L.; Gucmann, F.; Gregušová, D.; Fröhlich, K.; Haščík, Š.; Dobročka, E.; Tóth, L.; Pécz, B.; Kuzmík, J. Low-Temperature Atomic Layer Deposition-Grown Al2O3 Gate Dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of Deposition Conditions on Interface State Density. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 01A107. [Google Scholar] [CrossRef] [Green Version]
- Uenuma, M.; Takahashi, K.; Sonehara, S.; Tominaga, Y.; Fujimoto, Y.; Ishikawa, Y.; Uraoka, Y. Influence of Carbon Impurities and Oxygen Vacancies in Al2O3 Film on Al2O3/GaN MOS Capacitor Characteristics. AIP Adv. 2018, 8, 105103. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Wallace, R.M. In Situ Plasma Enhanced Atomic Layer Deposition Half Cycle Study of Al2O3 on AlGaN/GaN High Electron Mobility Transistors. Appl. Phys. Lett. 2015, 107, 081608. [Google Scholar] [CrossRef] [Green Version]
- Yoshitsugu, K.; Horita, M.; Ishikawa, Y.; Uraoka, Y. Characterizations of Al2O3 Gate Dielectric Deposited on n-GaN by Plasma-Assisted Atomic Layer Deposition. Phys. Status Solidi C 2013, 10, 1426–1429. [Google Scholar] [CrossRef]
- Ozaki, S.; Ohki, T.; Kanamura, M.; Imada, T.; Nakamura, N.; Okamoto, N.; Miyajima, T.; Kikkawa, T. Effect of Oxidant Source on Threshold Voltage Shift of AlGaN/GaN MIS-HEMTs Using ALD-Al2O3 Gate Insulator Films. In Proceedings of the CS MANTECH 2012 Conference, Boston, MA, USA, 23-26 April 2012. [Google Scholar]
- Liu, Z.H.; Ng, G.I.; Arulkumaran, S.; Maung, Y.K.T.; Zhou, H. Temperature-Dependent Forward Gate Current Transport in Atomic-Layer-Deposited Al2O3/AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor. Appl. Phys. Lett. 2011, 98, 163501. [Google Scholar] [CrossRef]
- Wu, J.; Lu, X.; Ye, S.; Park, J.; Streit, D. Electrical Characterization and Reliability Analysis of Al2O3/AlGaN/GaN MISH Structure. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; p. CD-6. [Google Scholar] [CrossRef]
- Heuken, L.; Ottaviani, A.; Fahle, D.; Zweipfennig, T.; Lükens, G.; Kalisch, H.; Vescan, A.; Heuken, M.; Burghartz, J.N. Limitations for Reliable Operation at Elevated Temperatures of Al2O3/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors Grown by Metal-Organic Chemical Vapor Deposition on Silicon Substrate. Phys. Status Solidi A 2020, 217, 1900697. [Google Scholar] [CrossRef]
- Terman, L.M. An Investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-Oxide-Silicon Diodes. Solid-State Electron. 1962, 5, 285–299. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Goetzberger, A. The Si-Sio, Interface–Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique. Bell Syst. Tech. J. 1967, 46, 1033–1055. [Google Scholar] [CrossRef]
- Shih, H.-A.; Kudo, M.; Suzuki, T. Analysis of AlN/AlGaN/GaN Metal-Insulator-Semiconductor Structure by Using Capacitance-Frequency-Temperature Mapping. Appl. Phys. Lett. 2012, 101, 043501. [Google Scholar] [CrossRef]
- Freedsman, J.J.; Kubo, T.; Egawa, T. Trap Characterization of In-Situ Metal-Organic Chemical Vapor Deposition Grown AlN/AlGaN/GaN Metal-Insulator-Semiconductor Heterostructures by Frequency Dependent Conductance Technique. Appl. Phys. Lett. 2011, 99, 033504. [Google Scholar] [CrossRef]
- Stoklas, R.; Gregušová, D.; Novák, J.; Vescan, A.; Kordoš, P. Investigation of Trapping Effects in AlGaN/GaN/Si Field-Effect Transistors by Frequency Dependent Capacitance and Conductance Analysis. Appl. Phys. Lett. 2008, 93, 124103. [Google Scholar] [CrossRef]
- Yang, S.; Tang, Z.; Wong, K.-Y.; Lin, Y.-S.; Lu, Y.; Huang, S.; Chen, K.J. Mapping of Interface Traps in High-Performance Al2O3/AlGaN/GaN MIS-Heterostructures Using Frequency- and Temperature-Dependent C-V Techniques. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 6.3.1–6.3.4. [Google Scholar] [CrossRef]
- Ramanan, N.; Lee, B.; Misra, V. Comparison of Methods for Accurate Characterization of Interface Traps in GaN MOS-HFET Devices. IEEE Trans. Electron Devices 2015, 62, 546–553. [Google Scholar] [CrossRef]
- Winzer, A.; Szabó, N.; Wachowiak, A.; Jordan, P.M.; Heitmann, J.; Mikolajick, T. Impact of Postdeposition Annealing upon Film Properties of Atomic Layer Deposition-Grown Al2O3 on GaN. J. Vac. Sci. Technol. B 2015, 33, 01A106. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Hori, Y.; Ma, W.-C.; Kikuta, D.; Narita, T.; Iguchi, H.; Uesugi, T.; Kachi, T.; Hashizume, T. Interface Properties of Al2O3/n-GaN Structures with Inductively Coupled Plasma Etching of GaN Surfaces. Jpn. J. Appl. Phys. 2012, 51, 060201. [Google Scholar] [CrossRef]
- Hori, Y.; Mizue, C.; Hashizume, T. Interface State Characterization of ALD-Al2O3/GaN and ALD-Al2O3/AlGaN/GaN Structures. Phys. Status Solidi C 2012, 9, 1356–1360. [Google Scholar] [CrossRef]
- Ooyama, K.; Kato, H.; Miczek, M.; Hashizume, T. Temperature-Dependent Interface-State Response in an Al2O3/n-GaN Structure. Jpn. J. Appl. Phys. 2008, 47, 5426. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Kaneki, S.; Hashizume, T. Improved Operation Stability of Al2O3/AlGaN/GaN MOS High-Electron-Mobility Transistors Grown on GaN Substrates. Appl. Phys. Express 2019, 12, 024002. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T. On the Origin of Interface States at Oxide/III-Nitride Heterojunction Interfaces. J. Appl. Phys. 2016, 120, 225305. [Google Scholar] [CrossRef] [Green Version]
- Yatabe, Z.; Hori, Y.; Kim, S.; Hashizume, T. Effects of Cl2-Based Inductively Coupled Plasma Etching of AlGaN on Interface Properties of Al2O3/AlGaN/GaN Heterostructures. Appl. Phys. Express 2012, 6, 016502. [Google Scholar] [CrossRef]
- Gregušová, D.; Stoklas, R.; Mizue, C.; Hori, Y.; Novák, J.; Hashizume, T.; Kordoš, P. Trap States in AlGaN/GaN Metal-Oxide-Semiconductor Structures with Al2O3 Prepared by Atomic Layer Deposition. J. Appl. Phys. 2010, 107, 106104. [Google Scholar] [CrossRef]
- Calzolaro, A.; Szabó, N.; Großer, A.; Gärtner, J.; Mikolajick, T.; Wachowiak, A. Surface Preconditioning and Postmetallization Anneal Improving Interface Properties and Vth Stability under Positive Gate Bias Stress in AlGaN/GaN MIS-HEMTs. Phys. Status Solidi A 2020, 2000585. [Google Scholar] [CrossRef]
- Bao, S.-Q.-G.-W.; Ma, X.-H.; Chen, W.-W.; Yang, L.; Hou, B.; Zhu, Q.; Zhu, J.-J.; Hao, Y. Method of Evaluating Interface Traps in Al2O3/AlGaN/GaN High Electron Mobility Transistors. Chin. Phys. B 2019, 28, 067304. [Google Scholar] [CrossRef]
- Wu, T.-L.; Marcon, D.; Bakeroot, B.; De Jaeger, B.; Lin, H.C.; Franco, J.; Stoffels, S.; Van Hove, M.; Roelofs, R.; Groeseneken, G.; et al. Correlation of Interface States/Border Traps and Threshold Voltage Shift on AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. Appl. Phys. Lett. 2015, 107, 093507. [Google Scholar] [CrossRef] [Green Version]
- Matys, M.; Adamowicz, B.; Hori, Y.; Hashizume, T. Direct Measurement of Donor-like Interface State Density and Energy Distribution at Insulator/AlGaN Interface in Metal/Al2O3/AlGaN/GaN by Photocapacitance Method. Appl. Phys. Lett. 2013, 103, 021603. [Google Scholar] [CrossRef] [Green Version]
- Matys, M.; Adamowicz, B.; Hashizume, T. Determination of the Deep Donor-like Interface State Density Distribution in Metal/Al2O3/n-GaN Structures from the Photocapacitance–Light Intensity Measurement. Appl. Phys. Lett. 2012, 101, 231608. [Google Scholar] [CrossRef] [Green Version]
- Miczek, M.; Mizue, C.; Hashizume, T.; Adamowicz, B. Effects of Interface States and Temperature on the C-V Behavior of Metal/Insulator/AlGaN/GaN Heterostructure Capacitors. J. Appl. Phys. 2008, 103, 104510. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.-Q.; Look, D.C.; Wang, X.-L.; Han, J.; Khan, F.A.; Adesida, I. Plasma-Etching-Enhanced Deep Centers in n-GaN Grown by Metalorganic Chemical-Vapor Deposition. Appl. Phys. Lett. 2003, 82, 1562–1564. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Nagamatsu, K.; Deki, M.; Taoka, N.; Tanaka, A.; Nitta, S.; Honda, Y.; Nakamura, T.; Amano, H. Low Interface State Densities at Al2O3/GaN Interfaces Formed on Vicinal Polar and Non-Polar Surfaces. Appl. Phys. Lett. 2020, 117, 102102. [Google Scholar] [CrossRef]
- Long, R.D.; Jackson, C.M.; Yang, J.; Hazeghi, A.; Hitzman, C.; Majety, S.; Arehart, A.R.; Nishi, Y.; Ma, T.P.; Ringel, S.A.; et al. Interface Trap Evaluation of Pd/Al2O3/GaN Metal Oxide Semiconductor Capacitors and the Influence of near-Interface Hydrogen. Appl. Phys. Lett. 2013, 103, 201607. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; Van Hove, M.; Marcon, D.; Stoffels, S.; Wu, T.-L.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Trapping Mechanisms in GaN-Based MIS-HEMTs Grown on Silicon Substrate. Phys. Status Solidi A 2015, 212, 1122–1129. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, S.; Bao, Q.; Wang, X.; Wei, K.; Jiang, H.; Cui, H.; Li, J.; Zhao, C.; Liu, X.; et al. Investigation of the Interface between LPCVD-SiNx Gate Dielectric and III-Nitride for AlGaN/GaN MIS-HEMTs. J. Vac. Sci. Technol. B 2016, 34, 041202. [Google Scholar] [CrossRef]
- Johnson, D.W.; Lee, R.T.; Hill, R.J.; Wong, M.H.; Bersuker, G.; Piner, E.L.; Kirsch, P.D.; Harris, H.R. Threshold Voltage Shift Due to Charge Trapping in Dielectric-Gated AlGaN/GaN High Electron Mobility Transistors Examined in Au-Free Technology. IEEE Trans. Electron Devices 2013, 60, 3197–3203. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Bisi, D.; Rossetto, I.; Wu, T.-L.; Van Hove, M.; Marcon, D.; Stoffels, S.; Decoutere, S.; Zanoni, E. Trapping and Reliability Issues in GaN-Based MIS HEMTs with Partially Recessed Gate. Microelectron. Reliab. 2016, 58, 151–157. [Google Scholar] [CrossRef]
- Calzolaro, A. Fabrication and Characterization of AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility-Transistors for High Power Applications. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2022. [Google Scholar]
- Nakazawa, S.; Shiozaki, N.; Negoro, N.; Tsurumi, N.; Anda, Y.; Ishida, M.; Ueda, T. Improved Hysteresis in a Normally-off AlGaN/GaN MOS Heterojunction Field-Effect Transistor with a Recessed Gate Structure Formed by Selective Regrowth. Jpn. J. Appl. Phys. 2017, 56, 091003. [Google Scholar] [CrossRef]
- Wu, T.-L.; Franco, J.; Marcon, D.; De Jaeger, B.; Bakeroot, B.; Stoffels, S.; Van Hove, M.; Groeseneken, G.; Decoutere, S. Toward Understanding Positive Bias Temperature Instability in Fully Recessed-Gate GaN MISFETs. IEEE Trans. Electron Devices 2016, 63, 1853–1860. [Google Scholar] [CrossRef]
- Kachi, T. Recent Progress of GaN Power Devices for Automotive Applications. Jpn. J. Appl. Phys. 2014, 53, 100210. [Google Scholar] [CrossRef]
- Kikuta, D.; Narita, T.; Kutsuki, K.; Uesugi, T.; Kachi, T. Reliability Evaluation of Al2O3 Deposited by Ozone-Based Atomic Layer Deposition on Dry-Etched n-Type GaN. Jpn. J. Appl. Phys. 2013, 52, 08JN19. [Google Scholar] [CrossRef]
- Tajima, M.; Hashizume, T. Impact of Gate and Passivation Structures on Current Collapse of AlGaN/GaN High-Electron-Mobility Transistors under Off-State-Bias Stress. Jpn. J. Appl. Phys. 2011, 50, 061001. [Google Scholar] [CrossRef]
- Kambayashi, H.; Nomura, T.; Ueda, H.; Harada, K.; Morozumi, Y.; Hasebe, K.; Teramoto, A.; Sugawa, S.; Ohmi, T. High Quality SiO2/Al2O3 Gate Stack for GaN Metal–Oxide–Semiconductor Field-Effect Transistor. Jpn. J. Appl. Phys. 2013, 52, 04CF09. [Google Scholar] [CrossRef]
- Guo, A.; del Alamo, J.A. Positive-Bias Temperature Instability (PBTI) of GaN MOSFETs. In Proceedings of the 2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 19–23 April 2015; pp. 6C.5.1–6C.5.7. [Google Scholar] [CrossRef]
- Guo, A.; del Alamo, J.A. Negative-Bias Temperature Instability of GaN MOSFETs. In Proceedings of the 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, 17–21 April 2016; pp. 4A-1-1–4A-1-6. [Google Scholar] [CrossRef]
- Van Hove, M.; Kang, X.; Stoffels, S.; Wellekens, D.; Ronchi, N.; Venegas, R.; Geens, K.; Decoutere, S. Fabrication and Performance of Au-Free AlGaN/GaN-on-Silicon Power Devices With Al2O3 and Si3N4/Al2O3 Gate Dielectrics. IEEE Trans. Electron Devices 2013, 60, 3071–3078. [Google Scholar] [CrossRef]
- Capriotti, M.; Alexewicz, A.; Fleury, C.; Gavagnin, M.; Bethge, O.; Visalli, D.; Derluyn, J.; Wanzenböck, H.D.; Bertagnolli, E.; Pogany, D.; et al. Fixed Interface Charges between AlGaN Barrier and Gate Stack Composed of in Situ Grown SiN and Al2O3 in AlGaN/GaN High Electron Mobility Transistors with Normally off Capability. Appl. Phys. Lett. 2014, 104, 113502. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Pannirselvam, S.; Pan, J.; Liu, W.; Jia, F.; Lu, Y.; Liu, C.; Yu, W.; He, J.; et al. Band Alignment of HfAlO/GaN (0001) Determined by X-Ray Photoelectron Spectroscopy: Effect of in Situ SiH4 Passivation. J. Alloys Compd. 2015, 636, 191–195. [Google Scholar] [CrossRef]
- Liu, X.; Chin, H.-C.; Tan, L.S.; Yeo, Y.-C. High-Permittivity Dielectric Stack on Gallium Nitride Formed by Silane Surface Passivation and Metal–Organic Chemical Vapor Deposition. IEEE Electron Device Lett. 2009, 31, 8–10. [Google Scholar] [CrossRef]
- Hatano, M.; Taniguchi, Y.; Kodama, S.; Tokuda, H.; Kuzuhara, M. Reduced Gate Leakage and High Thermal Stability of AlGaN/GaN MIS-HEMTs Using ZrO2/Al2O3 Gate Dielectric Stack. Appl. Phys. Express 2014, 7, 044101. [Google Scholar] [CrossRef]
- Partida-Manzanera, T.; Zaidi, Z.H.; Roberts, J.W.; Dolmanan, S.B.; Lee, K.B.; Houston, P.A.; Chalker, P.R.; Tripathy, S.; Potter, R.J. Comparison of Atomic Layer Deposited Al2O3 and (Ta2O5)0.12(Al2O3)0.88 Gate Dielectrics on the Characteristics of GaN-Capped AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors. J. Appl. Phys. 2019, 126, 034102. [Google Scholar] [CrossRef]
- Kikuta, D.; Itoh, K.; Narita, T.; Mori, T. Al2O3/SiO2 Nanolaminate for a Gate Oxide in a GaN-Based MOS Device. J. Vac. Sci. Technol. A Vac. Surf. Film 2017, 35, 01B122. [Google Scholar] [CrossRef]
- Mitrovic, I.Z.; Das, P.; Jones, L.; Gibbon, J.; Dhanak, V.R.; Mahapatra, R.; Manzanera, T.P.; Roberts, J.W.; Potter, R.J.; Chalker, P.R.; et al. Band Line-up of High-k Oxides on GaN. ECS Trans. 2020, 97, 67. [Google Scholar] [CrossRef]
- Le, S.P.; Ui, T.; Nguyen, T.Q.; Shih, H.-A.; Suzuki, T. Low-Frequency Noise in AlTiO/AlGaN/GaN Metal-Insulator-Semiconductor Heterojunction Field-Effect Transistors. J. Appl. Phys. 2016, 119, 204503. [Google Scholar] [CrossRef]
- Le, S.P.; Nguyen, D.D.; Suzuki, T. Insulator-Semiconductor Interface Fixed Charges in AlGaN/GaN Metal-Insulator-Semiconductor Devices with Al2O3 or AlTiO Gate Dielectrics. J. Appl. Phys. 2018, 123, 034504. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.W.; Chalker, P.R.; Lee, K.B.; Houston, P.A.; Cho, S.J.; Thayne, I.G.; Guiney, I.; Wallis, D.; Humphreys, C.J. Control of Threshold Voltage in E-Mode and D-Mode GaN-on-Si Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors by in-Situ Fluorine Doping of Atomic Layer Deposition Al2O3 Gate Dielectrics. Appl. Phys. Lett. 2016, 108, 072901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, M.; Joglekar, S.J.; Fujishima, T.; Palacios, T. Threshold Voltage Control by Gate Oxide Thickness in Fluorinated GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors. Appl. Phys. Lett. 2013, 103, 033524. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment. IEEE Electron Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
- Chu, R.; Corrion, A.; Chen, M.; Li, R.; Wong, D.; Zehnder, D.; Hughes, B.; Boutros, K. 1200-V Normally off GaN-on-Si Field-Effect Transistors with Low Dynamic on-Resistance. IEEE Electron Device Lett. 2011, 32, 632–634. [Google Scholar] [CrossRef]
- Yang, S.; Liu, S.; Liu, C.; Hua, M.; Chen, K.J. Gate Stack Engineering for GaN Lateral Power Transistors. Semicond. Sci. Technol. 2015, 31, 024001. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Tang, Z.; Wong, K.-Y.; Lin, Y.-S.; Liu, C.; Lu, Y.; Huang, S.; Chen, K.J. High-Quality Interface in Al2O3/GaN/GaN/AlGaN/GaN MIS Structures With In Situ Pre-Gate Plasma Nitridation. IEEE Electron Device Lett. 2013, 34, 1497–1499. [Google Scholar] [CrossRef]
- Chen, K.J.; Yang, S.; Tang, Z.; Huang, S.; Lu, Y.; Jiang, Q.; Liu, S.; Liu, C.; Li, B. Surface Nitridation for Improved Dielectric/III-Nitride Interfaces in GaN MIS-HEMTs. Phys. Status Solidi A 2015, 212, 1059–1065. [Google Scholar] [CrossRef]
- Asahara, R.; Nozaki, M.; Yamada, T.; Ito, J.; Nakazawa, S.; Ishida, M.; Ueda, T.; Yoshigoe, A.; Hosoi, T.; Shimura, T.; et al. Effect of Nitrogen Incorporation into Al-Based Gate Insulators in AlON/AlGaN/GaN Metal–Oxide–Semiconductor Structures. Appl. Phys. Express 2016, 9, 101002. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cheng, X.; Zheng, L.; Shen, L.; Li, J.; Zhang, D.; Qian, R.; Yu, Y. Interface Engineering of an AlNO/AlGaN/GaN MIS Diode Induced by PEALD Alternate Insertion of AlN in Al2O3. RSC Adv. 2017, 7, 11745–11751. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T. GaN Power Devices: Current Status and Future Challenges. Jpn. J. Appl. Phys. 2019, 58, SC0804. [Google Scholar] [CrossRef]
- Ogawa, E.; Hashizume, T.; Nakazawa, S.; Ueda, T.; Tanaka, T. Chemical and Potential Bending Characteristics of SiNx/AlGaN Interfaces Prepared by in Situ Metal-Organic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2007, 46, L590. [Google Scholar] [CrossRef]
- Takizawa, T.; Nakazawa, S.; Ueda, T. Crystalline SiNx Ultrathin Films Grown on AlGaN/GaN Using in Situ Metalorganic Chemical Vapor Deposition. J. Electron. Mater. 2008, 37, 628–634. [Google Scholar] [CrossRef]
- Derluyn, J.; Boeykens, S.; Cheng, K.; Vandersmissen, R.; Das, J.; Ruythooren, W.; Degroote, S.; Leys, M.R.; Germain, M.; Borghs, G. Improvement of AlGaN/GaN High Electron Mobility Transistor Structures by in Situ Deposition of a Si3N4 Surface Layer. J. Appl. Phys. 2005, 98, 054501. [Google Scholar] [CrossRef]
- Moens, P.; Liu, C.; Banerjee, A.; Vanmeerbeek, P.; Coppens, P.; Ziad, H.; Constant, A.; Li, Z.; De Vleeschouwer, H.; Roig-Guitart, J.; et al. An Industrial Process for 650V Rated GaN-on-Si Power Devices Using in-Situ SiN as a Gate Dielectric. In Proceedings of the 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 374–377. [Google Scholar] [CrossRef]
- Hua, M.; Liu, C.; Yang, S.; Liu, S.; Fu, K.; Dong, Z.; Cai, Y.; Zhang, B.; Chen, K.J. Characterization of Leakage and Reliability of SiNx Gate Dielectric by Low-Pressure Chemical Vapor Deposition for GaN-Based MIS-HEMTs. IEEE Trans. Electron Devices 2015, 62, 3215–3222. [Google Scholar] [CrossRef]
- Jauss, S.A.; Hallaceli, K.; Mansfeld, S.; Schwaiger, S.; Daves, W.; Ambacher, O. Reliability Analysis of LPCVD SiN Gate Dielectric for AlGaN/GaN MIS-HEMTs. IEEE Trans. Electron Devices 2017, 64, 2298–2305. [Google Scholar] [CrossRef]
- Whiteside, M.; Arulkumaran, S.; Dikme, Y.; Sandupatla, A.; Ng, G.I. Demonstration of AlGaN/GaN MISHEMT on Si with Low-Temperature Epitaxy Grown AlN Dielectric Gate. Electronics 2020, 9, 1858. [Google Scholar] [CrossRef]
- Hashizume, T.; Alekseev, E.; Pavlidis, D.; Boutros, K.S.; Redwing, J. Capacitance-Voltage Characterization of AlN/GaN Metal–Insulator–Semiconductor Structures Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition. J. Appl. Phys. 2000, 88, 1983–1986. [Google Scholar] [CrossRef] [Green Version]
- Uemoto, Y.; Shibata, D.; Yanagihara, M.; Ishida, H.; Matsuo, H.; Nagai, S.; Batta, N.; Li, M.; Ueda, T.; Tanaka, T.; et al. 8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 861–864. [Google Scholar] [CrossRef]
- Hwang, I.-H.; Kang, M.-J.; Cha, H.-Y.; Seo, K.-S. Crystalline AlN Interfacial Layer on GaN Using Plasma-Enhanced Atomic Layer Deposition. Crystals 2021, 11, 405. [Google Scholar] [CrossRef]
- Whiteside, M.; Ng, G.I.; Arulkumaran, S.; Ranjan, K.; Dikme, Y. Low Temperature Epitaxy Grown AlN Metal-Insulator-Semiconductor Diodes on AlGaN/GaN HEMT Structure. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 103–105. [Google Scholar] [CrossRef]
- Whiteside, M.; Arulkumaran, S.; Dikme, Y.; Sandupatla, A.; Ng, G.I. Improved Interface State Density by Low Temperature Epitaxy Grown AlN for AlGaN/GaN Metal-Insulator-Semiconductor Diodes. Mater. Sci. Eng. B 2020, 262, 114707. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzolaro, A.; Mikolajick, T.; Wachowiak, A. Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices. Materials 2022, 15, 791. https://doi.org/10.3390/ma15030791
Calzolaro A, Mikolajick T, Wachowiak A. Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices. Materials. 2022; 15(3):791. https://doi.org/10.3390/ma15030791
Chicago/Turabian StyleCalzolaro, Anthony, Thomas Mikolajick, and Andre Wachowiak. 2022. "Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices" Materials 15, no. 3: 791. https://doi.org/10.3390/ma15030791
APA StyleCalzolaro, A., Mikolajick, T., & Wachowiak, A. (2022). Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices. Materials, 15(3), 791. https://doi.org/10.3390/ma15030791