Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Microscopic Analysis of Fiber Crosssection
3.2. Compressive Strength
3.3. Splitting Tensile Strength
3.4. Bending Strength
3.5. Impact Energy Absorbed
3.6. Water Absorption Test
3.7. Statistical Analysis Using ANOVA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Lignocellulosic fiber cement compatibility: A state of the art review. J. Nat. Fibers 2021, 1–26. [Google Scholar] [CrossRef]
- Torgal, F.P.; Jalali, S. Natural Fiber Reinforced Concrete, No. 1994; Woodhead Publishing Limited: Sawston, UK, 2011; Volume 1, pp. 24–39. [Google Scholar]
- Silveira, D.; Varum, H.; Costa, A.; Martins, T.; Pereira, H.; Almeida, J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012, 28, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.P.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.; Ahmed, M.; Hoque, M.; Islam, S. Scope of using jute fiber for the reinforcement of concrete material. Text. Cloth. Sustain. 2016, 1, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Bourmaud, A.; Baley, C. Nanoindentation contribution to mechanical characterization of vegetal fibers. Compos. Part B Eng. 2012, 43, 2861–2866. [Google Scholar] [CrossRef]
- Chandramohan, D.; Marimuthu, K. A Review on Natural Fibers. Sci. Res. 2011, 8, 194–206. [Google Scholar]
- Pérez, E.; Famá, L.; Pardo, S.G.; Abad, M.J.; Bernal, C. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B Eng. 2012, 43, 2795–2800. [Google Scholar] [CrossRef]
- Shih, Y.F.; Cai, J.X.; Kuan, C.S.; Hsieh, C.F. Plant fibers and wasted fiber/epoxy green composites. Compos. Part B Eng. 2012, 43, 2817–2821. [Google Scholar] [CrossRef]
- Kavitha, S.; Kala, T.F. A review on natural fibers in the concrete. Int. J. Adv. Eng. Technol. 2018, 1, 32–35. [Google Scholar]
- Milanese, A.C.; Cioffi, M.O.H.; Voorwald, H.J.C. Thermal and mechanical behaviour of sisal/phenolic composites. Compos. Part B Eng. 2012, 43, 2843–2850. [Google Scholar] [CrossRef]
- Vajje, S.; Krishna, N.R. Study on addition of the natural fibers into concrete. Int. J. Sci. Technol. Res. 2013, 2, 213–218. [Google Scholar]
- Messiry, M.E.; Fadel, N. Tailoring the mechanical properties of jute woven/cement composite for innovation in the architectural constructions. J. Nat. Fibers 2021, 18, 1181–1193. [Google Scholar] [CrossRef]
- Palanikumar, K.; Ramesh, M.; Reddy, K.H. Experimental Investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J. Nat. Fibers 2016, 13, 321–331. [Google Scholar] [CrossRef]
- Palanisamy, E.; Ramasamy, M. Dependency of sisal and banana fiber on mechanical and durability properties of polypropylene hybrid fiber reinforced concrete. J. Nat. Fibers 2020, 1–11. [Google Scholar] [CrossRef]
- Rajendran, M.; Nagarajan, C. Experimental investigation on bio-composite using jute and banana fiber as a potential substitute of solid wood-based materials. J. Nat. Fibers 2021, 1–10. [Google Scholar] [CrossRef]
- Jaballi, S.; Miraoui, I.; Hassis, H. Long-unidirectional palm and sisal fibers reinforced composite: An experimental investigation. J. Nat. Fibers 2017, 14, 368–378. [Google Scholar] [CrossRef]
- Prasanthi, P.P.; Babu, K.S.; Kumar, M.S.; Kumar, A.E. Analysis of sisal fiber waviness effect on the elastic properties of natural composites using analytical and experimental methods. J. Nat. Fibers 2021, 18, 1675–1688. [Google Scholar] [CrossRef]
- Zakaria, M.; Ahmed, M.; Hoque, M.; Shaid, A. A Comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers 2020, 17, 676–687. [Google Scholar] [CrossRef]
- Ahmad, S.; Khushnood, R.A.; Jagdale, P.; Tulliani, J.M.; Ferro, G.A. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater. Des. 2015, 76, 223–329. [Google Scholar] [CrossRef]
- Rashid, K.; Balouch, N. Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Struct. Concr. 2017, 18, 589–596. [Google Scholar] [CrossRef]
- Rashid, K.; Nazir, S. A sustainable approach to optimum utilization of used foundry sand in concrete. Sci. Eng. Compos. Mater. 2018, 25, 927–937. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Ali, M. Seismic performance of coconut-fiber-reinforced-concrete columns with different reinforcement configurations of coconut-fiber ropes. Constr. Build. Mater. 2014, 70, 226–230. [Google Scholar] [CrossRef]
- Elsaid, A.; Dawood, M.; Seracino, R.; Bobko, C. Mechanical properties of kenaf fiber reinforced concrete. Constr. Build. Mater. 2011, 25, 1991–2001. [Google Scholar] [CrossRef]
- Thanushan, K.; Yogananth, Y.; Sangeeth, P.; Coonghe, J.G.; Sathiparan, N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers 2021, 18, 773–788. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Noman, M.T. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018, 109, 879–890. [Google Scholar] [CrossRef]
- Alengaram, U.J.; Al Muhit, B.A.; Bin Jumaat, M.Z. Utilization of oil palm kernel shell as lightweight aggregate in concrete—A review. Constr. Build. Mater. 2013, 38, 161–172. [Google Scholar] [CrossRef]
- Muda, Z.C.; Syamsir, A.; Mustapha, K.N. Impact resistance behaviour of banana fiber reinforced slabs. IOP Conf. Ser. Earth Environ. Sci. 2016, 32, 012017. [Google Scholar] [CrossRef] [Green Version]
- Pajak, M.; Ponikiewski, T. Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Eng. 2017, 193, 218–225. [Google Scholar] [CrossRef]
- Bala, S.; Chandrashekaran, J.; Selvan, S.S. Experimental investigation of natural fiber reinforced concrete in construction industry. Int. Res. J. Eng. Technol. 2015, 2, 179–182. [Google Scholar]
- Choi, S.Y.; Park, J.S.; Jung, W.T. A study on the shrinkage control of fiber reinforced concrete pavement. Procedia Eng. 2011, 14, 2815–2822. [Google Scholar] [CrossRef] [Green Version]
- Stephens, D. Natural fiber reinforced concrete blocks. In Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation, Colombo, Sri Lanka, 18–20 June 1994; pp. 317–321. [Google Scholar]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Marar, K.; Eren, O.; Çelik, T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001, 47, 297–304. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Sundararajan, T. Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005, 27, 547–553. [Google Scholar] [CrossRef]
- Rehacek, S.; Simunek, I.; Kolisko, J.; Hunka, P. Impact resistance of steel fiber reinforced concrete. In Proceedings of the Fibre Concrete 2011, Prague, Czech Republic, 8–9 September 2011. [Google Scholar]
- Mishra, R.; Petru, M. Natural Cellulosic Fiber Reinforced Bio-Epoxy Based Composites and Their Mechanical Properties. In Bioengineering and Biomedical Signal and Image Processing; Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H., Eds.; BIOMESIP 2021; Lecture Notes in Computer Science; Springer: Berling/Heidelberg, Germany, 2021; Volume 12940. [Google Scholar] [CrossRef]
- Ghulam, M.A.; Uddin, M.; Jamshaid, H.; Raza, A.; Tahir, Z.R.; Hussain, U.; Satti, A.N.; Hayat, N.; Arafat, A.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020, 31, 101411. [Google Scholar] [CrossRef]
- Hassan, T.; Jamshaid, H.; Mishra, R.; Khan, M.Q.; Petru, M.; Novak, J.; Choteborsky, R.; Hromasova, M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers 2020, 12, 654. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Gupta, N.; Pachauri, R.; Behera, B.K. Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 2015, 81, 91–97. [Google Scholar] [CrossRef]
- Mishra, R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018, 18, 95–106. [Google Scholar] [CrossRef]
- Anggono, J.; Farkas, A.; Bartos, A. Deformation and failure of sugarcane bagasse reinforced PP. Eur. Polym. J. 2019, 112, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Bunsell, A.R. Handbook of Properties of Textile and Technical Fibres; Elsevier: London, UK, 2018; ISBN 978-0-08-101272-7. [Google Scholar]
- Omoniyi, T.E.; Olorunnisola, A.O. Effects of manufacturing techniques on the physico-mechanical properties of cement-bonded bagasse fiber composite. J. Nat. Fibers 2020, 1–12. [Google Scholar] [CrossRef]
- Pellegrin, M.Z.D.; Acordi, J.; Montedo, O.R.K. Influence of the length and the content of cellulose fibers obtained from sugarcane bagasse on the mechanical properties of fiber-reinforced mortar composites. J. Nat. Fibers 2021, 18, 111–121. [Google Scholar] [CrossRef]
- Smith, N.; Virgo, G.; Buchanan, V. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater. Charact. 2008, 59, 1273–1278. [Google Scholar] [CrossRef]
- ASTM D2252-18; Standard Specification for Fineness of Types of Alpaca. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- ASTM D7025-09; Standard Test Method for Assessing Clean Flax Fiber Fineness. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D5103-07; Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test). American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- ASTM A820M; Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM D8171-18; Standard Test Methods for Density Determination of Flax Fiber. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- ASTM D3171-15; Standard Test Methods for Constituent Content of Composite Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM D3822M-14; Standard Test Method for Tensile Properties of Single Textile Fibers. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- ASTM C496-96; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM C78/C78M-21; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM C109/C109M-07; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM C1747_C1747M-13; Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- ASTM C127-04; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
Ingredient | Minimum% | Average% | Maximum% |
---|---|---|---|
SiO2 | 18.4 | 21.02 | 24.5 |
SO3 | 0 | 2.58 | 5.35 |
Fe2O3 | 0.16 | 2.85 | 5.78 |
CaO | 58.1 | 64.18 | 68 |
MgO | 0.02 | 1.67 | 7.1 |
Al2O3 | 3.1 | 5.04 | 7.56 |
K2O | 0.04 | 0.7 | 1.66 |
Na2O | 0 | 0.24 | 0.78 |
Free lime | 0.03 | 1.24 | 3.68 |
Fiber Characteristics | Jute Fiber | Sisal Fiber | Sugarcane Bagasse Fiber | Coconut/Coir Fiber |
---|---|---|---|---|
Fiber diameter (µ) | 18 ± 1.1 | 20 ± 1.2 | 22 ± 1.2 | 21 ± 1.1 |
Fiber fineness (Tex, g/km) | 17 ± 1.1 | 21 ± 1.2 | 32 ± 1.2 | 30 ± 1.3 |
Fiber length (mm) | 30 ± 2 | 30 ± 2 | 30 ± 2 | 30 ± 2 |
Fiber aspect ratio (-) | 167–344 | 200–400 | 136–318 | 143–429 |
Density (g/cm3) | 1.3 | 1.5 | 0.82 | 1.2 |
Porosity (%) | 15–17 | 12–14 | 39–42 | 32–35 |
Cellulose content (%) | 61–72 | 66-78 | 45–55 | 32–43 |
Lignin content (%) | 12–13 | 8–11 | 19–24 | 41–45 |
Crystallinity (%) | 60–65 | 68–70 | 51–53 | 27–33 |
Angle of orientation (°) | 8–10 | 10–25 | 14–15 | 30–49 |
Tensile strength (MPa) | 480 ± 16.2 | 381 ± 23.6 | 68 ± 9.1 | 175 ± 8.2 |
Elongation at break (%) | 2.3 ± 0.1 | 2.45 ± 0.1 | 1.5 ± 0.1 | 3.6 ± 0.2 |
Modulus (GPa) | 37.5 ± 1.4 | 28.5 ± 0.8 | 18.7 ± 0.8 | 22.0 ± 0.2 |
Tenacity (cN/Tex) | 20.02 ± 1.5 | 17.7 ± 0.9 | 14.2 ± 0.4 | 15.3 ± 0.6 |
Sample No. | Reinforcement Type | % Fiber Loading |
---|---|---|
1 | None | 0% |
2 | Jute | 0.5% |
3 | Sisal | 0.5% |
4 | Sugarcane | 0.5% |
5 | Coconut | 0.5% |
6 | Jute | 1% |
7 | Sisal | 1% |
8 | Sugarcane | 1% |
9 | Coconut | 1% |
10 | Jute | 1.5% |
11 | Sisal | 1.5% |
12 | Sugarcane | 1.5% |
13 | Coconut | 1.5% |
14 | Jute | 2% |
15 | Sisal | 2% |
16 | Sugarcane | 2% |
17 | Coconut | 2% |
18 | Jute | 2.5% |
19 | Sisal | 2.5% |
20 | Sugarcane | 2.5% |
21 | Coconut | 2.5% |
22 | Jute | 3% |
23 | Sisal | 3% |
24 | Sugarcane | 3% |
25 | Coconut | 3% |
Sample No. | Tensile Strength (MPa) Predicted by Halpin-Tsai Model | Experimental Tensile Strength (MPa) | Bending Strength (MPa) Predicted by Halpin-Tsai Model | Experimental Bending Strength (MPa) |
---|---|---|---|---|
1 | 0.52 | 0.52 | 0.18 | 0.18 |
2 | 0.85 | 0.84 | 0.32 | 0.31 |
3 | 0.81 | 0.80 | 0.30 | 0.27 |
4 | 0.56 | 0.55 | 0.24 | 0.22 |
5 | 0.71 | 0.69 | 0.29 | 0.26 |
6 | 1.08 | 1.05 | 0.35 | 0.33 |
7 | 0.88 | 0.87 | 0.33 | 0.29 |
8 | 0.57 | 0.56 | 0.27 | 0.23 |
9 | 0.74 | 0.72 | 0.31 | 0.26 |
10 | 1.16 | 1.14 | 0.39 | 0.36 |
11 | 0.97 | 0.95 | 0.36 | 0.31 |
12 | 0.61 | 0.59 | 0.30 | 0.24 |
13 | 0.84 | 0.80 | 0.36 | 0.27 |
14 | 1.28 | 1.25 | 0.42 | 0.29 |
15 | 1.01 | 0.99 | 0.40 | 0.27 |
16 | 0.65 | 0.62 | 0.34 | 0.21 |
17 | 0.88 | 0.85 | 0.41 | 0.24 |
18 | 1.33 | 1.21 | 0.48 | 0.27 |
19 | 1.08 | 0.96 | 0.43 | 0.25 |
20 | 0.68 | 0.61 | 0.38 | 0.20 |
21 | 0.95 | 0.84 | 0.46 | 0.23 |
22 | 1.38 | 1.14 | 0.54 | 0.26 |
23 | 1.10 | 0.93 | 0.48 | 0.24 |
24 | 0.71 | 0.58 | 0.41 | 0.19 |
25 | 1.01 | 0.83 | 0.51 | 0.21 |
ANOVA Terms | Compression Strength | Tensile Strength | Bending Strength | Impact Energy | Water Absorption Capacity % |
---|---|---|---|---|---|
R-sq (predicted) % | 92.42 | 93.23 | 85.35 | 91.78 | 85.14 |
Sum of squares (SS) | 5.54 | 5.86 | 5.07 | 5.82 | 4.23 |
Mean sum of squares (MS) | 2.25 | 2.01 | 2.78 | 2.16 | 2.12 |
F-statistic | 1.01 | 1.11 | 1.03 | 1.1 | 1.2 |
Error% | 4.41 | 3.20 | 5.44 | 4.71 | 4.88 |
% contribution of reinforcement fiber type | 54.23 | 60.74 | 42.86 | 46.28 | 69.14 |
% contribution of fiber loading | 45.77 | 39.26 | 57.14 | 53.72 | 30.86 |
p value | |||||
Type of fiber reinforcement | p ≤ 0.001 | p ≤ 0.012 | p ≤ 0.000 | p ≤ 0.001 | p ≤ 0.002 |
Fiber loading% | ------- | ------- | p ≤ 0.002 | p ≤ 0.535 | p ≤ 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshaid, H.; Mishra, R.K.; Raza, A.; Hussain, U.; Rahman, M.L.; Nazari, S.; Chandan, V.; Muller, M.; Choteborsky, R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials 2022, 15, 874. https://doi.org/10.3390/ma15030874
Jamshaid H, Mishra RK, Raza A, Hussain U, Rahman ML, Nazari S, Chandan V, Muller M, Choteborsky R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials. 2022; 15(3):874. https://doi.org/10.3390/ma15030874
Chicago/Turabian StyleJamshaid, Hafsa, Rajesh Kumar Mishra, Ali Raza, Uzair Hussain, Md. Lutfor Rahman, Shabnam Nazari, Vijay Chandan, Miroslav Muller, and Rostislav Choteborsky. 2022. "Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance" Materials 15, no. 3: 874. https://doi.org/10.3390/ma15030874
APA StyleJamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, M. L., Nazari, S., Chandan, V., Muller, M., & Choteborsky, R. (2022). Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials, 15(3), 874. https://doi.org/10.3390/ma15030874