Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol for Production of the Nitrided Diffusion Layers
2.2. Characterization Protocol
- K—wear rate ,
- V—total volume loss [μm3], V = Vsampe + Vball,
- Vsample—loss of sample’s material volume [μm3],
- Vball—loss of countersample’s material (ball) volume [μm3],
- F—load [N],
- S—distance [m]
3. Results and Discussion
3.1. Structural Characterization
3.2. Properties of the Layers
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P. Relationships between microstructure and properties of stainless steels—A few working examples. Mater. Charact. 2000, 44, 413–424. [Google Scholar] [CrossRef]
- Stiller, K.; Hättestrand, M.; Danoix, F. Precipitation in 9Ni-12Cr-2Cu maraging steels. Acta Mater. 1998, 46, 6063–6073. [Google Scholar] [CrossRef]
- Hättestrand, M.; Nilsson, J.O.; Stiller, K.; Liu, P.; Andersson, M. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel. Acta Mater. 2004, 52, 1023–1037. [Google Scholar] [CrossRef]
- Stiller, K.; Andersson, M. Precipitation and its Development in Maraging Steels Investigated by AP and EFTEM What is the Role of Mo? Microsc. Microanal. 2007, 13, 1626–1627. [Google Scholar] [CrossRef]
- Lindgren, L.E.; Post, J.; Saha, S.; Mitra, M.K.; Datta, K. Any Effect of Processing History on Precipitation Hardening of Metastable Austenitic Stainless Steels. Key Eng. Mater. 2012, 504, 851–856. [Google Scholar] [CrossRef]
- Datta, K.; Delhez, R.; Bronsveld, P.M.; Beyer, J.; Geijselaers, H.J.M.; Post, J. A low-temperature study to examine the role of ε-martensite during strain-induced transformations in metastable austenitic stainless steels. Acta Mater. 2009, 57, 3321–3326. [Google Scholar] [CrossRef]
- Xi, Y.-T.; Liu, D.-X.; Han, D. Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surf. Coat. Technol. 2008, 202, 2577–2583. [Google Scholar] [CrossRef]
- Li, C.X.; Bell, T. Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel. Wear 2004, 256, 1144–1152. [Google Scholar] [CrossRef]
- Baranowska, J. Importance of surface activation for nitrided layer formation on austenitic stainless steel. Surf. Eng. 2009, 26, 293–298. [Google Scholar] [CrossRef]
- Mingolo, N.; Tschiptschin, A.P.; Pinedo, C.E. On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel. Surf. Coat. Technol. 2006, 201, 4215–4218. [Google Scholar] [CrossRef]
- Espitia, L.A.; Varela, L.; Pinedo, C.E.; Tschiptschin, A.P. Cavitation erosion resistance of low temperature plasma nitrided martensitic stainless steel. Wear 2013, 301, 449–456. [Google Scholar] [CrossRef]
- Borgioli, F. From austenitic stainless steel to expanded austenite-s phase: Formation, characteristics and properties of an elusive metastable phase. Metals 2020, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Yoo, J.S.; Priest, J.M.; Fewell, M.P. Characteristics of martensitic stainless steel nitridedin a low-pressure RF plasma. Surf. Coat. Technol. 2003, 163, 380–385. [Google Scholar] [CrossRef]
- Umemura, M.T.; Varela, L.B.; Pinedo, C.E.; Cozza, R.C.; Tschiptschin, A.P. Assessment of tribological properties of plasma nitrided 410S ferritic-martensitic stainless steels. Wear 2019, 426, 49–58. [Google Scholar] [CrossRef]
- Dalibon, E.; Charadia, R.; Cabo, A.; Brühl, S.P. Short Time Ion Nitriding of AISI 420 Martensitic Stainless Steel to Improve Wear and Corrosion Resistance. Mater. Res. 2019, 22, e20190415. [Google Scholar] [CrossRef]
- Olsson, C.O.A.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Guillot, B.; Jégou, S.; Barrallier, L. Degradation of gaseous nitriding of steel by lubricant contamination—Effect of in-situ pre-treatments. Surf. Coat. Technol. 2017, 316, 59–70. [Google Scholar] [CrossRef]
- Christiansen, T.L.; Hummelshøj, T.S.; Somers, M.A.J. A Method of Activating an Article of Passive Ferrous or Non-Ferrous Metal Prior to Carburizing, Nitriding and/or Nitro-carburizing. U.S. Patent 8,845,823, 30 September 2014. [Google Scholar]
- Alberto, P.; Maria, A. Method for Activating Surface of Metal Member. European Patent 1 707 192 B1, 12 August 2009. [Google Scholar]
- Dong, H.; Esfandiari, M.; Li, X.Y. On the microstructure and phase identification of plasma nitrided 17-4 PH precipitation hardening stainless steel. Surf. Coat. Technol. 2008, 202, 2969–2975. [Google Scholar] [CrossRef]
- Kochmanski, P.; Nowacki, J. Influence of initial heat treatment of 17-4 PH stainless steel on gas nitriding kinetics. Surf. Coat. Technol. 2008, 202, 4834–4838. [Google Scholar] [CrossRef]
- Kochmański, P.; Nowacki, J. Activated gas nitriding of 17-4 PH stainless steel. Surf. Coat. Technol. 2006, 200, 6558–6562. [Google Scholar] [CrossRef]
- Riazi, H.; Ashrafizadeh, F.; Hosseini, S.R.; Ghomashchi, R.; Liu, R. Characterization of simultaneous aged and plasma nitrided 17-4 PH stainless steel. Mater. Charact. 2017, 133, 33–43. [Google Scholar] [CrossRef]
- Riazi, H.; Ashrafizadeh, F.; Eslami, A. Effect of plasma nitriding parameters on corrosion performance of 17-4 PH stainless steel. Can. Metall. Q. 2017, 56, 322–331. [Google Scholar] [CrossRef]
- Suharno, B.; Supriadi, S.; Ayuningtyas, S.T.; Widjaya, T.; Baek, E.R. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012050. [Google Scholar] [CrossRef]
- Frandsen, R.B.; Christiansen, T.; Somers, M.A.J. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel. Surf. Coat. Technol. 2006, 200, 5160–5169. [Google Scholar] [CrossRef]
- Kochmański, P.; Baranowska, J. Kinetics of low temperature nitriding of precipitation hardened stainless steel. Defect Diffus. Forum 2011, 312, 530–535. [Google Scholar] [CrossRef]
- Kochmański, P.; Baranowska, J. Structure and properties of gas nitrided layers on nanoflex stainless steel. Defect Diffus. Forum 2012, 326, 291–296. [Google Scholar] [CrossRef]
- Bottoli, F.; Winther, G.; Christiansen, T.L.; Somers, M.A.J. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 5201–5216. [Google Scholar] [CrossRef]
- Scheuer, C.J.; Cardoso, R.P.; Pereira, R.; Mafra, M.; Brunatto, S.F. Low temperature plasma carburizing of martensitic stainless steel. Mater. Sci. Eng. A 2012, 539, 369–372. [Google Scholar] [CrossRef]
- Corengia, P.; Walther, F.; Ybarra, G.; Sommadossi, S.; Corbari, R.; Broitman, E. Friction and rolling-sliding wear of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel. Wear 2006, 260, 479–485. [Google Scholar] [CrossRef]
- Triawan, F.; Nandiyanto, A.B.D.; Abdullah, A.G.; Aziz, M. Plasma nitriding time on the hardness and crystal structure/phase of SUS403 and SCS6 martensitic stainless steels: An analytical study. J. Eng. Sci. Technol. 2018, 13, 2369–2378. [Google Scholar]
- Farghali, A.; Aizawa, T. Nitrogen supersaturation process in the AISI420 martensitic stainless steels by low temperature plasma nitriding. ISIJ Int. 2018, 58, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.M.; Brunatto, S.F.; Cardoso, R.P. Martensitic stainless steels low-temperature nitriding: Dependence of substrate composition. Mater. Res. 2015, 18, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, Y.; Xiu, J.J.; Wang, W.; Zhu, Y.J.; Hu, B. Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding. Surf. Coat. Technol. 2017, 329, 184–192. [Google Scholar] [CrossRef]
- Aizawa, T.; Yoshino, T.; Morikawa, K.; Yoshihara, S.I. Microstructure of plasma nitrided AISI420 martensitic stainless steel at 673 K. Crystals 2019, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Espitia, L.A.; Dong, H.; Li, X.Y.; Pinedo, C.E.; Tschiptschin, A.P. Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel. Wear 2015, 332, 1070–1079. [Google Scholar] [CrossRef]
- Cajner, F.; Kovačić, S.; Rafael, H.; Vugrinčić, A.; Šimunović, V.; Gržeta, B. Influence of nitriding on corrosion resistance of martensitic X17CrNi16-2 stainless steel. Materialwissenschaft und Werkstofftechnik 2015, 46, 69–77. [Google Scholar] [CrossRef]
- Simison, S.; Lamas, D.G.; Brühl, S.P.; Cabo, A.; Charadia, R. Corrosion behavior of martensitic and precipitation hardening stainless steels treated by plasma nitriding. Surf. Coat. Technol. 2010, 204, 3280–3286. [Google Scholar] [CrossRef]
- Baranowska, J.; Kochmański, P.; Bielawski, J. The influence of chemical composition of stainless steel on the formation of low temperature nitrided layer. Defect Diffus. Forum 2012, 326, 297–302. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2017; ISBN 9781493966769. [Google Scholar]
- Stiller, K.; Danoix, F.; Hättestrand, M. Mo precipitation in a 12Cr–9Ni–4Mo–2Cu maraging steel. Mater. Sci. Eng. A 1998, 250, 22–26. [Google Scholar] [CrossRef]
- Kochmański, P.; Baranowska, J. Gas nitrided layers on precipitation hardened stainless steel. Inżynieria Mateiałowa 2010, 3, 324–327. [Google Scholar]
- Kochmański, P.; Baranowska, J.; Fryska, S. Microstructure of low-temperature gas-carbonitrided layers on austenitic stainless steel. Metals 2019, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- Li, C.X.; Bell, T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci. 2006, 48, 2036–2049. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Cu | Ti | Al | Fe |
---|---|---|---|---|---|---|---|---|---|
0.02 | 0.25 | 0.16 | 12.68 | 9.25 | 3.51 | 1.97 | 0.87 | 0.22 | Bal. |
Condition | Technological Operations | Vickers Hardness HV30 |
---|---|---|
A | Solutioning: temperature: 1120 °C/time: 1 h/vacuum atmosphere/nitrogen quenching | 271 ± 7 |
B | Solutioning/cold working | 375 ± 7 |
C | Solutioning/cold working/ageing: 475 °C/time: 4 h/air atmosphere | 602 ± 11 |
Sample | Temperature (°C) | Atmosphere Composition (vol.%) | Duration (h) | |
---|---|---|---|---|
NH3 | Dissociated NH3 | |||
1 | 425 | 100 | 0 | 4 |
2 | 450 | |||
3 | 475 | |||
4 | 425 | 50 | 50 | |
5 | 450 | |||
6 | 475 | |||
7 | 425 | 20 | 80 | |
8 | 450 | |||
9 | 475 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochmański, P.; Długozima, M.; Baranowska, J. Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel. Materials 2022, 15, 907. https://doi.org/10.3390/ma15030907
Kochmański P, Długozima M, Baranowska J. Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel. Materials. 2022; 15(3):907. https://doi.org/10.3390/ma15030907
Chicago/Turabian StyleKochmański, Paweł, Marcin Długozima, and Jolanta Baranowska. 2022. "Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel" Materials 15, no. 3: 907. https://doi.org/10.3390/ma15030907
APA StyleKochmański, P., Długozima, M., & Baranowska, J. (2022). Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel. Materials, 15(3), 907. https://doi.org/10.3390/ma15030907