Materials Engineering for Flexible Metallic Thin Film Applications
Abstract
:1. Introduction
2. Thin Film Deposition
2.1. Plasmas in Thin Film Deposition
2.2. Sputter Deposition
2.3. Thin Film Growth
2.4. Large-Area Deposition
2.5. Other Thin Film Deposition Methods
3. Electro-Mechanical Testing
3.1. Brittle Film Behavior
3.2. Ductile Film Behavior
3.3. Electrical Behavior
3.4. Cyclic Testing
4. Material Influences
4.1. Improving Fracture Resistance of Brittle Films
4.2. Microstructural Influences
4.3. Film Architecture and Thickness Ratios
4.4. Alloying
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.B.; Werner, J.H. Flexible solar cells for clothing. Mater. Today 2006, 9, 42–50. [Google Scholar] [CrossRef]
- Lee, S.; Shin, J.; Jang, J. Top Interface Engineering of Flexible Oxide Thin-Film Transistors by Splitting Active Layer. Adv. Funct. Mater. 2017, 27, 1604921. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef]
- Lacour, S.P.; Wagner, S.; Narayan, R.J.; Li, T.; Suo, Z. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 2006, 100, 014913. [Google Scholar] [CrossRef]
- Wagner, S.; Bauer, S. Materials for stretchable electronics. MRS Bull. 2012, 37, 207–213. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.W.; Lam, L. A review of conducting polymers in electrical contact applications. In Proceedings of the International Conference of Polymeric Materials in Power Engineering (ICPMPE), Singapore, 3–6 December 2007; p. 9. [Google Scholar]
- Kraft, U.; Molina-Lopez, F.; Son, D.; Bao, Z.; Murmann, B. Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Adv. Electron. Mater. 2020, 6, 1900681. [Google Scholar] [CrossRef]
- Konuma, M. Film Deposition by Plasma Techniques, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-642-84511-6. [Google Scholar]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed.; Elsevier: Oxford, UK, 2010. [Google Scholar]
- Window, B. Issues in magnetron sputtering of hard coatings. Surf. Coat. Technol. 1996, 81, 92–98. [Google Scholar] [CrossRef]
- Bräuer, G.; Szyszka, B.; Vergöhl, M.; Bandorf, R. Magnetron sputtering—Milestones of 30 years. Vacuum 2010, 84, 1354–1359. [Google Scholar] [CrossRef]
- Sproul, W.D.; Christie, D.J.; Carter, D.C. Control of reactive sputtering processes. Thin Solid Films 2005, 491, 1–17. [Google Scholar] [CrossRef]
- Arnell, R.D.; Kelly, P.J. Recent advances in magnetron sputtering. Surf. Coat. Technol. 1999, 112, 170–176. [Google Scholar] [CrossRef]
- Sellers, J. Asymmetric bipolar pulsed DC: The enabling technology for reactive PVD. Surf. Coat. Technol. 1998, 98, 1245–1250. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A 2003, 21, S117–S128. [Google Scholar] [CrossRef]
- Barbee, T.W.; Holmes, W.H.; Keith, D.L.; Pyzyna, M.K.; Ilonca, G. Synthesis of amorphous niobium-nickel alloys by vapor quenching. Thin Solid Films 1977, 45, 591–599. [Google Scholar] [CrossRef]
- Hora, J.; Hall, C.; Evans, D.; Charrault, E. Inorganic Thin Film Deposition and Application on Organic Polymer Substrates. Adv. Eng. Mater. 2018, 20, 1700868. [Google Scholar] [CrossRef]
- Rausch, M.; Pavlovič, M.; Kreiml, P.; Cordill, M.J.; Winkler, J.; Mitterer, C. Sputter deposition of Mo-based multicomponent thin films from rotatable targets: Experiment and simulation. Appl. Surf. Sci. 2018, 455, 1029–1036. [Google Scholar] [CrossRef]
- Greene, J.E. Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A 2017, 35, 05C204. [Google Scholar] [CrossRef] [Green Version]
- Movchan, B.A.; Demchishin, A. Investigates of the structure and properties of thick vaccum-deposited films of nickel, titanium, tungsten, alumina, and zirconium dioxide. Fiz. Metal. Metalloved. 1969, 28, 653–660. [Google Scholar]
- Anders, A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 2010, 518, 4087–4090. [Google Scholar] [CrossRef] [Green Version]
- Rausch, M.; Sabag, A.; Pichler, K.-H.; Gruber, G.C.; Köstenbauer, J.; Köstenbauer, H.; Kreiml, P.; Cordill, M.J.; Winkler, J.; Mitterer, C. The sputter performance of an industrial-scale planar Mo-target over its lifetime: Target erosion and fi lm properties. Surf. Coat. Technol. 2020, 381, 125174. [Google Scholar] [CrossRef]
- Kukla, R. Magnetron sputtering on large scale substrates: An overview on the state of the art. Surf. Coat. Technol. 1997, 93, 1–6. [Google Scholar] [CrossRef]
- De Gryse, R.; Haemers, J.; Leroy, W.P.; Depla, D. Thirty years of rotatable magnetrons. Thin Solid Films 2012, 520, 5833–5845. [Google Scholar] [CrossRef]
- Souk, J.; Morozumi, S.; Luo, F.; Bita, I. (Eds.) Flat Panel Display Manufacturing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Lorenz, R.; O’Sullivan, M.; Sprenger, D.; Lang, B.; Köstenbauer, H.; Winkler, J.; Mitterer, C. Oxidation and wet-etching behavior of MoAlTi thin films deposited by sputtering from a rotatable MoAlTi compound target. J. Vac. Sci. Technol. B 2019, 37, 021202. [Google Scholar] [CrossRef]
- Jörg, T.; Hofer, A.M.; Köstenbauer, H.; Winkler, J.; Mitterer, C. Oxidation and wet etching behavior of sputtered Mo-Ti-Al films. J. Vac. Sci. Technol. A 2018, 36, 021513. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.-C.; Kim, Y.; Ha, C.-S. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33, 581–630. [Google Scholar] [CrossRef]
- Tsukada, T.; Hosokawa, N. Adhesion of Copper Films on Abs Polymers Deposited in an Internal Magnet Magnetron Sputtering System. J. Vac. Sci. Technol. 1979, 16, 348–351. [Google Scholar] [CrossRef]
- Jörg, T.; Cordill, M.J.; Franz, R.; Glushko, O.; Winkler, J.; Mitterer, C. The electro-mechanical behavior of sputter-deposited Mo thin films on flexible substrates. Thin Solid Films 2016, 606, 45–50. [Google Scholar] [CrossRef]
- Putz, B.; Milassin, G.; Butenko, Y.; Völker, B.; Gammer, C.; Semprimoschnig, C.; Cordill, M.J. Combined TEM and XPS studies of metal-polymer interfaces for space applications. Surf. Coat. Technol. 2017, 332, 368–375. [Google Scholar] [CrossRef]
- Daniel, R.; Martinschitz, K.J.; Keckes, J.; Mitterer, C. The origin of stresses in magnetron-sputtered thin films with zone T structures. Acta Mater. 2010, 58, 2621–2633. [Google Scholar] [CrossRef]
- Jin, H.; Lu, W.-Y.; Cordill, M.J.; Schmidegg, K. In situ Study of Cracking and Buckling of Chromium Films on PET Substrates. Exp. Mech. 2011, 51, 219–227. [Google Scholar] [CrossRef]
- Swartwout, R.; Hoerantner, M.T.; Bulović, V. Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy Environ. Mater. 2019, 2, 119–145. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Shin, K.; Lee, C. Roll-to-Roll Coating Technology and Its Applications: A Review. Int. J. Precis. Eng. Manuf. 2016, 17, 537–550. [Google Scholar] [CrossRef]
- Tekin, E.; Smith, P.J.; Schubert, U.S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2007, 4, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Samusjew, A.; Lassnig, A.; Cordill, M.J.; Krawczyk, K.K.; Griesser, T. Inkjet Printed Wiring Boards with Vertical Interconnect Access on Flexible, Fully Compostable Cellulose Substrates. Adv. Mater. Technol. 2017, 3, 1700250. [Google Scholar] [CrossRef]
- Krawczyk, K.K.; Groten, J.; Glushko, O.; Krivec, M.; Frühwirth, M.; Schulz, G.; Wolf, C.; Hartmann, D.; Moser, M.; Cordill, M.J.; et al. Self-Reducing Silver Ink on Polyurethane Elastomers for the Manufacture of Thin and Highly Stretchable Electrical Circuits. Chem. Mater. 2021, 33, 2742–2755. [Google Scholar] [CrossRef]
- Perelaer, J.; de Gans, B.-J.; Schubert, U.S. Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks. Adv. Mater. 2006, 18, 2101–2104. [Google Scholar] [CrossRef]
- Agrawal, D.C.; Raj, R. Measurement of the ultimate shear strength of a metal-ceramic interface. Acta Metall. 1989, 37, 1265–1270. [Google Scholar] [CrossRef]
- Kelly, A.; Tyson, W.R. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Jobin, V.C.; Raj, R.; Phoenix, S.L. Rate effects in metal-ceramic interface sliding from the periodic film cracking technique. Acta Metall. Mater. 1992, 40, 2269–2280. [Google Scholar] [CrossRef]
- Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 2000, 48, 31–42. [Google Scholar] [CrossRef]
- Li, T.; Huang, Z.; Suo, Z.; Lacour, S.P.; Wagner, S. Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 2004, 85, 3435–3437. [Google Scholar] [CrossRef] [Green Version]
- Lacour, S.P.; Tsay, C.; Wagner, S. An elastically stretchable TFT circuit. IEEE Electron Device Lett. 2004, 25, 792–794. [Google Scholar] [CrossRef]
- Ho, P.S.; Faupel, F. Adhesion and deformation study of metal/polymer structures by a stretch deformation method. Appl. Phys. Lett. 1988, 53, 1602–1604. [Google Scholar] [CrossRef]
- Faupel, F.; Yang, C.H.; Chen, S.T.; Ho, P.S. Adhesion and deformation of metal/polyimide layered structures. J. Appl. Phys. 1989, 65, 1911–1917. [Google Scholar] [CrossRef]
- Taylor, A.A.; Cordill, M.J.; Dehm, G. On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philos. Mag. 2012, 92, 3363–3380. [Google Scholar] [CrossRef]
- Taylor, A.A.; Edlmayr, V.; Cordill, M.J.; Dehm, G. The effect of film thickness variations in periodic cracking: Analysis and experiments. Surf. Coat. Technol. 2011, 206, 1830–1836. [Google Scholar] [CrossRef]
- Cordill, M.J.; Taylor, A.A.; Berger, J.; Schmidegg, K.; Dehm, G. Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philos. Mag. 2012, 92, 3346–3362. [Google Scholar] [CrossRef]
- Cordill, M.J.; Taylor, A.A. Thickness effect on the fracture and delamination of titanium films. Thin Solid Films 2015, 589, 209–214. [Google Scholar] [CrossRef]
- Toth, F.; Rammerstorfer, F.G.; Cordill, M.J.; Fischer, F.D. Detailed modelling of delamination buckling of thin films under global tension. Acta Mater. 2013, 61, 2425–2433. [Google Scholar] [CrossRef] [Green Version]
- Cordill, M.J.; Taylor, A.; Schalko, J.; Dehm, G. Fracture and delamination of chromium thin films on polymer substrates. Metall. Mater. Trans. A 2010, 41, 870–875. [Google Scholar] [CrossRef] [Green Version]
- Cordill, M.J.; Fischer, F.D.; Rammerstorfer, F.G.; Dehm, G. Adhesion energies of Cr thin films on polyimide determined from buckling: Experiment and model. Acta Mater. 2010, 58, 5520–5531. [Google Scholar] [CrossRef]
- Frank, S.; Gruber, P.; Handge, U.A.; Spolenak, R. In situ studies on the cohesive properties of α- And β-Ta layers on polyimide substrates. Acta Mater. 2011, 59, 5881–5892. [Google Scholar] [CrossRef]
- Frank, S.; Handge, U.A.; Olliges, S.; Spolenak, R. The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis. Acta Mater. 2009, 57, 1442–1453. [Google Scholar] [CrossRef]
- Taylor, A.A.; Cordill, M.J.; Bowles, L.; Schalko, J.; Dehm, G. An elevated temperature study of a Ti adhesion layer on polyimide. Thin Solid Films 2013, 531, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Leterrier, Y.; Mottet, A.; Bouquet, N.; Gilliéron, D.; Dumont, P.; Pinyol, A.; Lalande, L.; Waller, J.H.; Månson, J.-A.E. Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings. Thin Solid Films 2010, 519, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Cordill, M.J.; Kleinbichler, A.; Völker, B.; Kraker, P.; Economy, D.R.; Többens, D.; Kirchlechner, C.; Kennedy, M.S. In-situ observations of the fracture and adhesion of Cu/Nb multilayers on polyimide substrates. Mater. Sci. Eng. A 2018, 735, 456–462. [Google Scholar] [CrossRef]
- Polyakov, M.N.; Lohmiller, J.; Gruber, P.A.; Hodge, A.M. Load Sharing Phenomena in Nanoscale Cu/Nb Multilayers. Adv. Eng. Mater. 2015, 17, 810–814. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, J.Y.; Li, J.; Wang, Y.Q.; Liu, G.; Sun, J. Length-scale-dependent cracking and buckling behaviors of nanostructured Cu/Cr multilayer films on compliant substrates. Acta Mater. 2015, 100, 344–358. [Google Scholar] [CrossRef]
- Gruber, P.A.; Arzt, E.; Spolenak, R. Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. 2009, 24, 1906–1918. [Google Scholar] [CrossRef] [Green Version]
- Marx, V.M.; Toth, F.; Wiesinger, A.; Berger, J.; Kirchlechner, C.; Cordill, M.J.; Fischer, F.D.; Rammerstorfer, F.G.; Dehm, G. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model. Acta Mater. 2015, 89, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Putz, B.; May-Miller, C.; Matl, V.; Völker, B.; Többens, D.M.; Semprimoschnig, C.; Cordill, M.J. Two-stage cracking of metallic bi-layers on polymer substrates under tension. Scr. Mater. 2018, 145, 5–8. [Google Scholar] [CrossRef]
- Glushko, O.; Klug, A.; List-Kratochvil, E.J.W.; Cordill, M.J. Relationship between mechanical damage and electrical degradation in polymer-supported metal films subjected to cyclic loading. Mater. Sci. Eng. A 2016, 662, 157–161. [Google Scholar] [CrossRef]
- Putz, B.; Schoeppner, R.L.; Glushko, O.; Bahr, D.F.; Cordill, M.J. Improved electro-mechanical performance of gold films on polyimide without adhesion layers. Scr. Mater. 2015, 102, 23–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Cordill, M.J.; Paulitsch, M.; Katsarelis, C.; Putz, B.; Lassnig, A.; Kennedy, M.S. Influence of interlayers onthe intefacial behavior of Ag films on polymer substrates. Thin Solid Films 2022, 742, 139051. [Google Scholar] [CrossRef]
- Cordill, M.J.; Marx, V.M. Fragmentation testing for ductile thin films on polymer substrates. Philos. Mag. Lett. 2013, 93, 618–624. [Google Scholar] [CrossRef]
- Cordill, M.J.; Marx, V.M. In-situ tensile straining of metal films on polymer substrates under an AFM. MRS Online Proc. Libr. 2013, 1527, 607. [Google Scholar] [CrossRef]
- Preiß, E.I.; Merle, B.; Göken, M. Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM. Mater. Sci. Eng. A 2017, 691, 218–225. [Google Scholar] [CrossRef]
- Cordill, M.J.; Glushko, O.; Kreith, J.; Marx, V.M.; Kirchlechner, C. Measuring electro-mechanical properties of thin films on polymer substrates. Microelectron. Eng. 2015, 137, 96–100. [Google Scholar] [CrossRef]
- Berger, J.; Glushko, O.; Marx, V.M.; Kirchlechner, C.; Cordill, M.J. Effect of microstructure on the electro-mechanical behavior of Cu films on polyimide. JOM 2016, 68, 1640–1646. [Google Scholar] [CrossRef]
- Lu, N.; Wang, X.; Suo, Z.; Vlassak, J.J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 2007, 91, 221909. [Google Scholar] [CrossRef]
- Glushko, O.; Cordill, M.J. Electrical Resistance of Metal Films on Polymer Substrates under Tension. Exp. Tech. 2016, 40, 303–310. [Google Scholar] [CrossRef]
- Lu, N.; Wang, X.; Suo, Z.; Vlassak, J. Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates. J. Mater. Res. 2009, 24, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Putz, B.; Glushko, O.; Marx, V.M.; Kirchlechner, C.; Toebbens, D.; Cordill, M.J. Electro-mechanical performance of thin gold films on polyimide. MRS Adv. 2016, 1, 773–778. [Google Scholar] [CrossRef]
- Cordill, M.J.; Glushko, O.; Putz, B. Electro-Mechanical Testing of Conductive Materials Used in Flexible Electronics. Front. Mater. 2016, 3, 11. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Electro-mechanical behavior of Al/Mo bilayers studied with in situ straining methods. Thin Solid Films 2018, 665, 131–136. [Google Scholar] [CrossRef]
- Schlich, F.F.; Wyss, A.; Galinski, H.; Spolenak, R. Cohesive and adhesive properties of ultrathin amorphous and crystalline Ge2Sb2Te5 films on polyimide substrates. Acta Mater. 2017, 126, 264–271. [Google Scholar] [CrossRef]
- Schlich, F.F.; Spolenak, R. Size- and phase-dependent mechanical properties of ultrathin Si films on polyimide substrates. Acta Mater. 2016, 110, 122–130. [Google Scholar] [CrossRef]
- Jörg, T.; Cordill, M.J.; Franz, R.; Kirchlechner, C.; Többens, D.M.; Winkler, J.; Mitterer, C. Thickness dependence of the electro-mechanical response of sputter-deposited Mo thin films on polyimide: Insights from in-situ sychrotron diffraction tensile tests. Mater. Sci. Eng. A 2017, 697, 17–23. [Google Scholar] [CrossRef]
- Glushko, O.; Kraker, P.; Cordill, M.J. Explicit relationship between electrical and topological degradation of polymer-supported metal films subjected to mechanical loading. Appl. Phys. Lett. 2017, 110, 191904. [Google Scholar] [CrossRef] [Green Version]
- Glushko, O.; Putz, B.; Cordill, M.J. Determining effective crack lengths from electrical measurements in polymer-supported thin films. Thin Solid Films 2020, 699, 137906. [Google Scholar] [CrossRef]
- Glushko, O.; Klug, A.; List-Kratochvil, E.J.W.; Cordill, M.J. Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates. J. Mater. Res. 2017, 32, 1760–1769. [Google Scholar] [CrossRef] [Green Version]
- Glushko, O.; Cordill, M.J. Electrical Resistance Decrease Due to Grain Coarsening Under Cyclic Deformation. JOM 2014, 66, 598–601. [Google Scholar] [CrossRef]
- Schwaiger, R.; Dehm, G.; Kraft, O. Cyclic deformation of polycrystalline Cu films. Philos. Mag. 2003, 83, 693–710. [Google Scholar] [CrossRef]
- Kraft, O.; Wellner, P.; Hommel, M.; Schwaiger, R.; Arzt, E. Fatigue behavior of polycrystalline thin copper films. Z. Fuer Met. Res. Adv. Tech. 2002, 93, 392–400. [Google Scholar] [CrossRef]
- Kraft, O.; Schwaiger, R.; Wellner, P. Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng. A 2001, 319–321, 919–923. [Google Scholar] [CrossRef]
- Zhang, G.P.; Schwaiger, R.; Volkert, C.A.; Kraft, O. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos. Mag. Lett. 2003, 83, 477–483. [Google Scholar] [CrossRef]
- Sun, X.J.; Wang, C.C.; Zhang, J.; Liu, G.; Zhang, G.J.P.; Ding, X.D.; Zhang, G.J.P.; Sun, J. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D Appl. Phys. 2008, 41, 195404. [Google Scholar] [CrossRef]
- Trinks, C.; Volkert, C.A. Transition from dislocation glide to creep controlled damage in fatigued thin Cu films. J. Appl. Phys. 2013, 114, 093510. [Google Scholar] [CrossRef]
- Kim, B.J.; Shin, H.A.S.; Lee, J.H.; Yan, T.Y.; Haas, T.; Gruber, P.; Chou, I.S.; Kraft, O.; Joo, Y.C. Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 2014, 29, 2827–2834. [Google Scholar] [CrossRef]
- Kim, B.-J.; Haas, T.; Friederich, A.; Lee, J.-H.; Nam, D.-H.; Binder, J.R.; Bauer, W.; Choi, I.-S.; Joo, Y.-C.; Gruber, P.A.; et al. Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices. Nanotechnology 2014, 25, 125706. [Google Scholar] [CrossRef] [PubMed]
- Sim, G.-D.; Lee, Y.-S.; Lee, S.-B.; Vlassak, J.J. Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng. A 2013, 575, 86–93. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Correlation of mechanical damage and electrical behavior of Al/Mo bilayers subjected to bending. Thin Solid Films 2019, 687, 137480. [Google Scholar] [CrossRef]
- Glushko, O.; Cordill, M.J.; Klug, A.; List-Kratochvil, E.J.W. The effect of bending loading conditions on the reliability of inkjet printed and evaporated silver metallization on polymer substrates. Microelectron. Reliab. 2016, 56, 109–113. [Google Scholar] [CrossRef]
- Yi, S.M.; Choi, I.S.; Kim, B.J.; Joo, Y.-C. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue. Electron. Mater. Lett. 2018, 14, 387–404. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Yi, S.-M.; Lee, J.-H.; Lee, H.-S.; Hyun, S.; Joo, Y.-C. Effects of bending fatigue on the electrical resistance in metallic films on flexible substrates. Met. Mater. Int. 2010, 16, 947–951. [Google Scholar] [CrossRef]
- Kim, B.-J.; Shin, H.-A.-S.; Jung, S.-Y.; Cho, Y.; Kraft, O.; Choi, I.-S.; Joo, Y.-C. Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 2013, 61, 3473–3481. [Google Scholar] [CrossRef]
- Cordill, M.J.; Jörg, T.; Glushko, O.; Franz, R.; Mitterer, C. Crack deflecting microstructure for improved electro-mechanical lifetimes of flexible systems. Mater. Lett. 2019, 244, 47–49. [Google Scholar] [CrossRef]
- Schwaiger, R.; Kraft, O. Size effects in the fatigue behavior of thin Ag films. Acta Mater. 2003, 51, 195–206. [Google Scholar] [CrossRef]
- Sim, G.D.; Won, S.; Jin, C.Y.; Park, I.; Lee, S.B.; Vlassak, J.J. Improving the stretchability of as-deposited Ag coatings on poly-ethylene-terephthalate substrates through use of an acrylic primer. J. Appl. Phys. 2011, 109, 073511. [Google Scholar] [CrossRef] [Green Version]
- Guan, Q.; Laven, J.; Bouten, P.C.P.; de With, G. Mechanical failure of brittle thin films on polymers during bending by two-point rotation. Thin Solid Films 2016, 611, 107–116. [Google Scholar] [CrossRef]
- Kamiya, S.; Izumi, H.; Sekine, T.; Shishido, N.; Sugiyama, H.; Haga, Y.; Minari, T.; Koganemaru, M.; Tokito, S. A multidimensional scheme of characterization for performance deterioration behavior of flexible devices under bending deformation. Thin Solid Films 2020, 694, 137613. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P. An in depth comparison of methods to evaluate bending failure for flexible electronics. Dig. Tech. Pap.—SID Int. Symp. 2021, 52, 111–114. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Improved electro-mechanical reliability of flexible systems with alloyed Mo-Ta adhesion layers. Thin Solid Films 2021, 720, 138533. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Winkler, J.; Mitterer, C.; Cordill, M.J. Compressive and tensile bending of sputter deposited Al/Mo bilayers. Scr. Mater. 2019, 162, 367–371. [Google Scholar] [CrossRef]
- Andersons, J.; Modniks, J.; Leterrier, Y.; Tornare, G.; Dumont, P.; Månson, J.A.E. Evaluation of toughness by finite fracture mechanics from crack onset strain of brittle coatings on polymers. Theor. Appl. Fract. Mech. 2008, 49, 151–157. [Google Scholar] [CrossRef] [Green Version]
- De Goede, J.; Bouten, P.; Médico, L.; Leterrier, Y.; Månson, J.; Nisato, G. Failure of brittle functional layers in flexible electronic devices. Mater. Res. Soc. Symp. Proc. 2005, 854, U9.2. [Google Scholar] [CrossRef]
- Plojoux, J.; Leterrier, Y.; Månson, J.-A.E.; Templier, F. Mechanical integrity analysis of multilayer insulator coatings on flexible steel substrates. Thin Solid Films 2007, 515, 6890–6898. [Google Scholar] [CrossRef]
- Stoney, G.G. The Tension of Metallic Films Deposited by Electrolysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1909, 82, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Hofer, A.M.; Schlacher, J.; Keckes, J.; Winkler, J.; Mitterer, C. Sputtered molybdenum films: Structure and property evolution with film thickness. Vacuum 2014, 99, 149–152. [Google Scholar] [CrossRef]
- Jörg, T.; Music, D.; Hauser, F.; Cordill, M.J.; Franz, R.; Winkler, J.; Schneider, J.M.; Mitterer, C. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations. Sci. Rep. 2017, 7, 7374. [Google Scholar] [CrossRef] [PubMed]
- Jörg, T.; Music, D.; Cordill, M.J.; Franz, R.; Köstenbauer, H.; Linke, C.; Winkler, J.; Schneider, J.M.; Mitterer, C. A correlative experimental and ab initio approach to improve the fracture behavior of Mo thin films by alloying with Cu. Appl. Phys. Lett. 2017, 111, 134101. [Google Scholar] [CrossRef]
- Etiemble, A.; Lopes, L.; Bouala, G.I.N.; Borges, J.; Malchère, A.; Langlois, C.; Vaz, F.; Steyer, P. Fracture resistance of Ti-Ag thin films deposited on polymeric substrates for biosignal acquisition applications. Surf. Coat. Technol. 2019, 358, 646–653. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P.; Putz, B.; Trost, C.O.W.; Lassnig, A.; Mitterer, C.; Renault, P.O.; Faurie, D. Film architecture and thickness effects in biaxially strained polymer supported Al/Mo bilayers. Mater. Today Commun. 2021. submitted. [Google Scholar]
- Woo, N.C.; Cherenack, K.; Tröster, G.; Spolenak, R. Designing micro-patterned Ti films that survive up to 10% applied tensile strain. Appl. Phys. A 2010, 100, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Marx, V.M.; Kirchlechner, C.; Breitbach, B.; Cordill, M.J.; Többens, D.M.; Waitz, T.; Dehm, G. Strain-induced phase transformation of a thin Co film on flexible substrates. Acta Mater. 2016, 121, 227–233. [Google Scholar] [CrossRef]
- Marx, V.M.; Cordill, M.J.; Többens, D.M.; Kirchlechner, C.; Dehm, G. Effect of annealing on the size dependent deformation behavior of thin cobalt films on flexible substrates. Thin Solid Films 2017, 624, 34–40. [Google Scholar] [CrossRef]
- Cordill, M.J.; Glushko, O.; Kleinbichler, A.; Putz, B.; Többens, D.M.; Kirchlechner, C. Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates. Thin Solid Films 2017, 644, 166–172. [Google Scholar] [CrossRef]
- Glushko, O.; Kiener, D. Initiation of fatigue damage in ultrafine grained metal films. Acta Mater. 2021, 206, 116599. [Google Scholar] [CrossRef]
- Lu, N.; Suo, Z.; Vlassak, J.J. The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 2010, 58, 1679–1687. [Google Scholar] [CrossRef]
- Olliges, S.; Gruber, P.A.; Orso, S.; Auzelyte, V.; Ekinci, Y.; Solak, H.H.; Spolenak, R. In situ observation of cracks in gold nano-interconnects on flexible substrates. Scr. Mater. 2008, 58, 175–178. [Google Scholar] [CrossRef]
- Gruber, P.A.; Böhm, J.; Onuseit, F.; Wanner, A.; Spolenak, R.; Arzt, E. Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 2008, 56, 2318–2335. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, T.; Suo, Z.; Vlassak, J.J. High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 2005, 87, 161910. [Google Scholar] [CrossRef]
- Onisawa, K.; Takayama, S.; Shigesato, Y.; Takahashi, T. Thin Film Transistors; Kuo, Y., Ed.; Springer: Boston, MA, USA, 2004; Volume 1, ISBN 978-1-4020-7504-9. [Google Scholar]
- Zhang, J.Y.; Zhang, X.; Wang, R.H.; Lei, S.Y.; Zhang, P.; Niu, J.J.; Liu, G.; Zhang, G.J.; Sun, J. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 2011, 59, 7368–7379. [Google Scholar] [CrossRef]
- Putz, B.; Milassin, G.; Butenko, Y.; Völker, B.; Gammer, C.; Semprimoschnig, C.; Cordill, M.J. Interfacial mutations in the Al-Polyimide system. Surf. Interface Anal. 2018, 50, 579–586. [Google Scholar] [CrossRef]
- Putz, B.; Wurster, S.; Edwards, T.E.J.; Völker, B.; Milassin, G.; Többens, D.M.; Semprimoschnig, C.O.A.; Cordill, M.J. Mechanical and optical degradation of optical solar reflectors during simulated low earth orbit thermal cycling. Acta Astronaut. 2020, 175, 277–289. [Google Scholar] [CrossRef]
- Cordill, M.J.; Kreiml, P.; Putz, B.; Mitterer, C.; Thiaudiere, D.; Mocuta, C.; Renault, P.-O.; Faurie, D. Role of layer order on the equi-biaxial behavior of Al/Mo bilayers. Scr. Mater. 2021, 194, 113656. [Google Scholar] [CrossRef]
- Cordill, M.J.; Jörg, T.; Többens, D.M.; Mitterer, C. Improved fracture resistance of Cu/Mo bilayers with thickness tailoring. Scr. Mater. 2021, 202, 113994. [Google Scholar] [CrossRef]
- Kreiml, P.; Rausch, M.; Terziyska, V.L.; Köstenbauer, H.; Winkler, J.; Mitterer, C.; Cordill, M.J. Balancing the electro-mechanical and interfacial performance of Mo-based alloy films. Materialia 2020, 12, 100774. [Google Scholar] [CrossRef]
- Lohmiller, J.; Spolenak, R.; Gruber, P.A. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films. Mater. Sci. Eng. A 2014, 595, 235–240. [Google Scholar] [CrossRef]
- Lohmiller, J.; Woo, N.C.; Spolenak, R. Microstructure-property relationship in highly ductile Au-Cu thin films for flexible electronics. Mater. Sci. Eng. A 2010, 527, 7731–7740. [Google Scholar] [CrossRef]
Test Type | Deposition Method | Benefit(s) | Limitation(s) | Solution(s) |
---|---|---|---|---|
Electrical resistance | Sputtering or Evaporation |
|
|
|
Printing |
|
|
| |
Cyclic Testing | Sputtering |
|
|
|
Evaporation | ||||
Printing |
Material | Deposition Method | Benefit(s) | Limitation(s) | Solution(s) |
---|---|---|---|---|
Brittle Film | Sputtering |
|
|
|
Evaporation |
|
|
| |
Ductile Film | Sputtering |
|
|
|
Evaporation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordill, M.J.; Kreiml, P.; Mitterer, C. Materials Engineering for Flexible Metallic Thin Film Applications. Materials 2022, 15, 926. https://doi.org/10.3390/ma15030926
Cordill MJ, Kreiml P, Mitterer C. Materials Engineering for Flexible Metallic Thin Film Applications. Materials. 2022; 15(3):926. https://doi.org/10.3390/ma15030926
Chicago/Turabian StyleCordill, Megan J., Patrice Kreiml, and Christian Mitterer. 2022. "Materials Engineering for Flexible Metallic Thin Film Applications" Materials 15, no. 3: 926. https://doi.org/10.3390/ma15030926
APA StyleCordill, M. J., Kreiml, P., & Mitterer, C. (2022). Materials Engineering for Flexible Metallic Thin Film Applications. Materials, 15(3), 926. https://doi.org/10.3390/ma15030926