Measurement of Shear Strengths of Cu Films Using Precise Chip Forming
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Nano Cutting Test
2.3. SEM (Scanning Electron Microscopy) and X-ray Diffraction (XRD) Test
3. Results and Discussion
3.1. Shear Strengths of Cu Films
3.2. X-ray Diffraction (XRD) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, C.-W.; Huang, H. Deformation, failure and removal mechanisms of thin film structures in abrasive machining. Adv. Manuf. 2017, 5, 1–19. [Google Scholar] [CrossRef]
- Jörg, T.; Music, D.; Hauser, F.; Cordill, M.J.; Franz, R.; Köstenbauer, H.; Winkler, J.; Schneider, J.; Mitterer, C. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations. Sci. Rep. 2017, 7, 7374. [Google Scholar] [CrossRef] [PubMed]
- Spearing, S. Materials issues in microelectromechanical systems (MEMS). Acta Mater. 2000, 48, 179–196. [Google Scholar] [CrossRef]
- Nix, W.D. Mechanical properties of thin films. Metall. Trans. A 1989, 20, 2217–2245. [Google Scholar] [CrossRef]
- Poon, B.; Rittel, D.; Ravichandran, G. An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 2008, 45, 6018–6033. [Google Scholar] [CrossRef] [Green Version]
- Antunes, J.; Fernandes, J.; Sakharova, N.; Oliveira, M.; Menezes, L. On the determination of the Young’s modulus of thin films using indentation tests. Int. J. Solids Struct. 2007, 44, 8313–8334. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, K.; Oliver, J.B.; Lambropoulos, J.C. Nano-indentation of single-layer optical oxide thin films grown by electron-beam deposition. Appl. Opt. 2015, 54, 2435–2440. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Bhakhri, V.; Giuliani, F.; Atkinson, A. Nanoindentation of Porous Bulk and Thin Films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater. 2013, 61, 5720–5734. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Song, J.; Hsu, D.D.; Keten, S. Understanding the Interfacial Mechanical Response of Nanoscale Polymer Thin Films via Nanoindentation. Macromolecules 2016, 49, 3810–3817. [Google Scholar] [CrossRef]
- Du, Y.; Xu, T.; Shaw, T.M.; Liu, X.H.; Bonilla, G.; Li, H.; Lu, H. A novel tri-layer nanoindentation method to measure the mechanical properties of a porous brittle ultra-low-k dielectric thin film. Extreme Mech. Lett. 2017, 13, 100–107. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, C.S.; Chen, J.A.; Ding, G.F.; Ding, W.; Wang, L.; Wang, M.; Zhang, Y.; Zhan, T. Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Film. 2004, 460, 175–180. [Google Scholar] [CrossRef]
- Richter, F.; Herrmann, M.; Molnar, F.; Chudoba, T.; Schwarzer, N.; Keunecke, M.; Bewilogua, K.; Zhang, X.W.; Boyen, H.G.; Ziemann, P. Substrate influence in Young’s modulus determination of thin films by indentation methods: Cubic boron nitride as an example. Surf. Coat. Technol. 2006, 201, 3577–3587. [Google Scholar] [CrossRef]
- Chen, S.; Liu, L.; Wang, T. Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol. 2005, 191, 25–32. [Google Scholar] [CrossRef]
- Saha, R.; Nix, W.D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002, 50, 23–38. [Google Scholar] [CrossRef]
- Pham, V.-T.; Fang, T.-H. Pile-up and heat effect on the mechanical response of SiGe on Si(0 0 1) substrate during nanoscratching and nanoindentation using molecular dynamics. Comput. Mater. Sci. 2019, 174, 109465. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, X.; Vlassak, J.J. The Mechanical Properties of Electroplated Cu Thin Films Measured by means of the Bulge Test Technique. MRS Proc. 2001, 695, 491. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Tsui, T.; Vlassak, J. The mechanical properties of freestanding electroplated Cu thin films. J. Mater. Res. 2006, 21, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Merchant, M.E. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J. Appl. Phys. 1945, 16, 267–275. [Google Scholar] [CrossRef]
- Saito, F.; Nishiyama, I.; Hyodo, T. Cutting strength—A new indicator for the mechanical strength of materials. Mater. Lett. 2012, 66, 144–146. [Google Scholar] [CrossRef]
- Yin, K.; Xia, Y.; Chan, C.; Zhang, W.; Wang, Q.; Zhao, X.; Li, A.; Liu, Z.; Bayes, M.; Yee, K. The kinetics and mechanism of room-temperature microstructural evolution in electroplated copper foils. Scr. Mater. 2008, 58, 65–68. [Google Scholar] [CrossRef]
- Kim, H.S. Formation of Crystalline Copper Thin Films by a Sputtering-assisted Magnetic Field System at Room Temperature. Appl. Sci. Converg. Technol. 2018, 27, 1–4. [Google Scholar] [CrossRef]
- Son, S.M.; Lim, H.S.; Ahn, J.H. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int. J. Mach. Tools Manuf. 2005, 45, 529–535. [Google Scholar] [CrossRef]
- Basak, M.; Rahman, L.; Ahmed, F.; Biswas, B.; Sharmin, N. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach. J. Alloy. Compd. 2021, 895, 162694. [Google Scholar] [CrossRef]
- Nath, S.S.; Chakdar, D.; Gope, G. Synthesis of CdS and ZnS quantum dots and their applications in electronics, Nanotrends. J. Nanotechnol. Its Appl. 2007, 2, 1–3. [Google Scholar]
- Nath, S.S.; Chakdar, D.; Gope, G.; Avasthi, D.K. Effect of 100 Mev Nickel Ions on Silica Coated ZnS Quantum Dot. J. Nanoelectron. Optoelectron. 2008, 3, 1–4. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.; Yang, F.; Jiang, J.; Sun, J.; Wu, G.; Ma, A.; Ma, X. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
- Neh, K.; Ullmann, M.; Kawalla, R. Effect of Grain refining Additives on Microstructure and Mechanical Properties of the Commercial Available Magnesium alloys AZ31 and AM50. Mater. Today: Proc. 2015, 2, S219–S224. [Google Scholar] [CrossRef]
Sample | Test No. | Ø (°) | (MPa) | |
---|---|---|---|---|
5 μm Electroplated Cu | 1 | 39.3 | 1.57 | 302.5 |
2 | 40 | 1.56 | 308.4 | |
3 | 40.1 | 1.55 | 310.3 | |
Mean Value | 39.8 ± 0.4 | 1.56 ± 0.01 | 307.1 ± 3.3 | |
1.5 μm Electroplated Cu | 1 | 38.3 | 1.60 | 310.3 |
2 | 38.5 | 1.59 | 312.5 | |
3 | 40.2 | 1.55 | 316.1 | |
Mean Value | 39 ± 0.9 | 1.58 ± 0.02 | 313.0 ± 2.4 | |
130 nm Sputtered Cu | 1 | 28.3 | 2.00 | 359.4 |
2 | 27.3 | 2.07 | 416.8 | |
3 | 27.8 | 2.03 | 390.3 | |
Mean Value | 27.8 ± 0.4 | 2.03 ± 0.02 | 388.8 ± 23.5 |
Sample | (hkl) | Coherent Domain Size (nm) |
---|---|---|
Electroplated Cu 5 μm | (111) | 72.4 |
(200) | 59.5 | |
(220) | 69.2 | |
Average | 67.0 ± 5.5 | |
Electroplated Cu 1.5 μm | (111) | 59.4 |
(200) | 48.8 | |
(220) | 69.2 | |
Average | 59.1 ± 8.3 | |
Sputtered Cu 130 nm | (111) | 41.4 |
(200) | 37.2 | |
Average | 39.3 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kwak, J.B. Measurement of Shear Strengths of Cu Films Using Precise Chip Forming. Materials 2022, 15, 948. https://doi.org/10.3390/ma15030948
Lee J-H, Kwak JB. Measurement of Shear Strengths of Cu Films Using Precise Chip Forming. Materials. 2022; 15(3):948. https://doi.org/10.3390/ma15030948
Chicago/Turabian StyleLee, Jeong-Heon, and Jae B. Kwak. 2022. "Measurement of Shear Strengths of Cu Films Using Precise Chip Forming" Materials 15, no. 3: 948. https://doi.org/10.3390/ma15030948
APA StyleLee, J. -H., & Kwak, J. B. (2022). Measurement of Shear Strengths of Cu Films Using Precise Chip Forming. Materials, 15(3), 948. https://doi.org/10.3390/ma15030948