Identification of Aluminium Powder Properties for Modelling Free Air Explosions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Test Measurements
2.2. Numerical Modelling Assumptions
2.3. Governing Equation for Explosions
3. Identification and Validation
3.1. Identification—Simulation of 100 g Tests
3.2. Validation—Simulation of the 500 g Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiang, D.; Rong, J.; He, X.; Feng, Z. Underwater Explosion Performance of RDX/AP-Based Aluminized Explosives. Central Eur. J. Energetic Mater. 2017, 14, 60–76. [Google Scholar] [CrossRef]
- Rubio, M.A.; Rubio, M.A.; Gunduz, I.E.; Gunduz, I.E.; Groven, L.J.; Groven, L.J.; Sippel, T.R.; Sippel, T.R.; Han, C.W.; Han, C.W.; et al. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. Combust. Flame 2017, 176, 162–171. [Google Scholar] [CrossRef]
- Nie, H.-Q.; Chan, H.Y.; Pisharath, S.; Hng, H.H. Combustion characteristic and aging behavior of bimetal thermite powders. Def. Technol. 2020, 17, 755–762. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Wang, M. Ignition and combustion of nano-sized aluminum particles: A reactive molecular dynamics study. Combust. Flame 2019, 201, 276–289. [Google Scholar] [CrossRef]
- Gang, L.; Niu, L.; Hao, W.; Liu, Y.; Zhang, C. Atomistic insight into the microexplosion-accelerated oxidation process of molten aluminum nanoparticles. Combust. Flame 2020, 214, 238–250. [Google Scholar] [CrossRef]
- Karasev, V.V.; Onischuk, A.A.; Glotov, O.G.; Baklanov, A.M.; Maryasov, A.G.; Zarko, V.E.; Panfilov, V.N.; Levykin, A.I.; Sabel-feld, K.K. Formation of charged aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air. Combust. Flame 2004, 138, 40–54. [Google Scholar] [CrossRef]
- Lewis, W.K.; Rumchik, C.G.; Smith, M.J.; Fernando, K.A.S.; Crouse, C.A.; Spowart, J.E.; Guliants, E.A.; Bunker, C.E. Comparison of post-detonation combustion in explosives incorporating aluminum nanoparticles: Influence of the passivation layer. J. Appl. Phys. 2013, 113, 044907. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.M.; Gross, K.C.; Perram, G.P. Fireball and shock wave dynamics in the detonation of aluminized novel munitions. Combust. Explos. Shock Waves 2013, 49, 450–462. [Google Scholar] [CrossRef]
- Peuker, J.M.; Lynch, P.; Krier, H.; Glumac, N. Optical depth measurements of fireballs from aluminized high explosives. Opt. Lasers Eng. 2009, 47, 1009–1015. [Google Scholar] [CrossRef]
- Carney, J.R.; Miller, J.S.; Gump, J.C.; Pangilinan, G.I. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives. Rev. Sci. Instrum. 2006, 77, 063103. [Google Scholar] [CrossRef]
- Togashi, F.; Baum, J.D.; Soto, O.A.; Löhner, R.; Zhang, F. Numerical simulation of TNT-Al explosives in explosion chamber. In Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, USA, 9–13 July 2012. [Google Scholar]
- Miller, P.J. A Reactive Flow Model with Coupled Reaction Kinetics for Detonation and Combustion in Non-Ideal Explosives. MRS Proc. 1995, 418, 413. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Bai, F.; Huang, F.; Hussain, T. A New Equation of State for Detonation Products of RDX-Based Aluminized Explosives. Propellants Explos. Pyrotech. 2019, 44, 1293–1301. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Menon, S. On the Role of Ambient Reactive Particles in the Mixing and Afterburn behind Explosive Blast Waves. Combust. Sci. Technol. 2010, 182, 186–214. [Google Scholar] [CrossRef]
- Xiao, L.-Q.; Fan, X.-Z.; Li, J.-Z.; Qin, Z.; Fu, X.-L.; Pang, W.-Q.; Wang, Y. Effect of Al content and particle size on the combustion of HMX-CMDB propellant. Combust. Flame 2020, 214, 80–89. [Google Scholar] [CrossRef]
- Yue, J.-Z.; Duan, Z.-P.; Zhang, Z.-Y.; Ou, Z.-C. Research on Equation of State For Detonation Products of Aluminized Explosive. J. Energetic Mater. 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Baranowski, P.; Kucewicz, M.; Gieleta, R.; Stankiewicz, M.; Konarzewski, M.; Bogusz, P.; Pytlik, M.; Małachowski, J. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations. Int. J. Impact Eng. 2020, 140, 103543. [Google Scholar] [CrossRef]
- Sielicki, P.W.; Łodygowski, T. Masonry wall behaviour under explosive loading. Eng. Fail. Anal. 2019, 104, 274–291. [Google Scholar] [CrossRef]
- Baranowski, P.; Małachowski, J.; Mazurkiewicz, Ł. Local blast wave interaction with tire structure. Def. Technol. 2020, 16, 520–529. [Google Scholar] [CrossRef]
- Yu, V.; Frolov, P.; Pokhil, P.F.; Logachev, V.S. Ignition and combustion of powdered aluminum in high-temperature gaseous media and in a composition of heterogeneous condensed systems. Combust. Explos. Shock Waves 1972, 8, 168–187. [Google Scholar]
- Gajewski, T.; Sielicki, P.W. Experimental study of blast loading behind a building corner. Shock Waves 2020, 30, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Warnstedt, P.; Gebbeken, N. Innovative protection of urban areas–Experimental research on the blast mitigating potential of hedges. Landsc. Urban Plan. 2020, 202, 103876. [Google Scholar] [CrossRef]
- Sielicki, P.W.; Pludra, A.; Przybylski, M. Experimental measurement of the bullet trajectory after perforation of a chambered window. Int. J. Appl. Glass Sci. 2019, 10, 441–448. [Google Scholar] [CrossRef]
- Sielicki, P.W.; Ślosarczyk, A.; Szulc, D. Concrete slab fragmentation after bullet impact: An experimental study. Int. J. Prot. Struct. 2019, 10, 380–389. [Google Scholar] [CrossRef]
- Clutter, J.K. Application of Computational Modeling for Explosive Hazard Assessments. Int. J. Prot. Struct. 2013, 4, 293–314. [Google Scholar] [CrossRef]
- Luo, H.; Baum, J.D.; Löhner, R. On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 2004, 194, 304–328. [Google Scholar] [CrossRef]
- Liou, M.-S. Progress towards an improved CFD method-AUSM+. In Proceedings of the 12th Computational Fluid Dynamics Conference, San Diego, CA, USA, 19–22 June 1995. [Google Scholar] [CrossRef]
- Maier, G.; Bolzon, G.; Buljak, V.; Garbowski, T.; Miller, B. Synergistic Combinations of Computational Methods and Ex-Periments for Structural Diagnosis, Computer Methods in Mechanic; Kuczma, M., Wilmanski, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 453–476. [Google Scholar]
P (GPa) | UCJ (km/s) | V (cc/g) | T (K) | C (km/s) | γ |
---|---|---|---|---|---|
0.002 | 1.166 | 192.557 | 3108.4 | 0.602 | 0.954 |
Material | ρo (g/cc) | A (GPa) | B (GPa) | R1 | R2 | ω | Eo (kJ/cc) |
---|---|---|---|---|---|---|---|
explosive | 2.68 | 1.43 × 10−1 | −5.6 × 10−4 | 21.875 | 0.33 | 0.3507 | 0 |
detonation products | 2.68 | 2.86 × 10−2 | 2.8 × 10−3 | 7.0 | 0.50 | 0.3507 | 2.4 × 10−3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sielicki, P.W.; Clutter, J.K.; Sumelka, W.; Gajewski, T.; Malendowski, M.; Peksa, P.; Studziński, R. Identification of Aluminium Powder Properties for Modelling Free Air Explosions. Materials 2022, 15, 1294. https://doi.org/10.3390/ma15041294
Sielicki PW, Clutter JK, Sumelka W, Gajewski T, Malendowski M, Peksa P, Studziński R. Identification of Aluminium Powder Properties for Modelling Free Air Explosions. Materials. 2022; 15(4):1294. https://doi.org/10.3390/ma15041294
Chicago/Turabian StyleSielicki, Piotr W., James Keith Clutter, Wojciech Sumelka, Tomasz Gajewski, Michał Malendowski, Piotr Peksa, and Robert Studziński. 2022. "Identification of Aluminium Powder Properties for Modelling Free Air Explosions" Materials 15, no. 4: 1294. https://doi.org/10.3390/ma15041294
APA StyleSielicki, P. W., Clutter, J. K., Sumelka, W., Gajewski, T., Malendowski, M., Peksa, P., & Studziński, R. (2022). Identification of Aluminium Powder Properties for Modelling Free Air Explosions. Materials, 15(4), 1294. https://doi.org/10.3390/ma15041294