Cathodic Protection of Mild Steel Using Aluminium-Based Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructural Analysis
2.3. Electrochemical Measurements
3. Results
3.1. Microstructural Analysis
3.2. Electrochemical Properties
3.2.1. Open-Circuit Potential of Al-Based Alloys
3.2.2. Potentiodynamic Polarisation Measurements
3.2.3. Galvanic Coupling (ZRA)
3.3. Alternating Immersion and Salt Spray and Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, D.F. Hydrogen Re-Embrittlement Susceptibility of Ultra High-Strength Steels. Ph.D. Thesis, Cranfield University, School of Industrial and Manufacturing Science, Cranfield, UK, 2005. [Google Scholar]
- BS 1706:1990; British Standards Institution Method for Specifying Electroplated Coatings of Zinc and Cadmiun on Iron and Steel. British Standards Institution: London, UK, 1990.
- Shreir, L.L. Corrosion: Corrosion Control, 2nd ed.; Butterworths: London, UK, 1994; Volume 2. [Google Scholar]
- Baboian, R. Corrosion Tests and Standards: Application and Interpretation, 2nd ed.; ASTM International: Baltimore, MD, USA, 2005; Volume 20. [Google Scholar]
- Shreir, L.L. Corrosion: Metal/Environment Reactions, 2nd ed.; Newnes-Butterworths: London, UK, 1965; Volume 1. [Google Scholar]
- Occupational Safety and Health Administration. 1910.1027—Cadmium|Occupational Safety and Health Administration. Available online: https://osha.gov (accessed on 2 December 2021).
- Naguy, T.; Slenski, G.; Keenan, R.; Chiles, G. Replacement Coatings for Aircraft Electronic Connectors: Findings and Potential Alternatives Report; AFRL-ML-TY-TR-1999-4530; Air Force Research Laboratory: Dayton, OH, USA, 1998; p. 62. [Google Scholar]
- Holm, O.; Hansen, E.; Lassen, C.; Stuer-Lauridsen, F.; Kjolholt, J. Heavy Metals in Waste Final Report DG ENV. E3, Project ENV. E; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Frankel, G. 2015 WR Whitney Award Lecture: The Effects of Microstructure and Composition on Al Alloy Corrosion. Corrosion 2015, 71, 1308–1320. [Google Scholar] [CrossRef]
- Baker, D.; Druschitz, A. Understanding the Corrosion of Low-Voltage Al-Ga Anodes. In Proceedings of the Corrosion 2016, Vancouver, BC, Canada, 6–10 March 2016. [Google Scholar]
- Idusuyi, N.; Oluwole, O. Aluminium anode activation research-a review. IJST 2012, 2, 561–566. [Google Scholar]
- Corrosion Doctors. History of Cathodic Protection. Available online: https://corrosion-doctors.org/Corrosion-History/CP-History.htm (accessed on 29 November 2021).
- Corrosion Doctors. Galvanic Series. Available online: http://www.corrosion-doctors.org/Definitions/galvanic-series.htm (accessed on 29 November 2021).
- Despić, A.; Dražić, D.; Purenović, M.; Ciković, N. Electrochemical properties of aluminium alloys containing indium, gallium and thallium. J. Appl. Electrochem. 1976, 6, 527–542. [Google Scholar] [CrossRef]
- Le Guyader, H. Consumable Anode for Cathodic Protection, Made of Aluminum-Based Alloy. U.S. Patent 5,547,560, 20 August 1996. [Google Scholar]
- MIL-DTL-24779C(SH); Detail Specification Anodes Sacrificial Aluminium Alloy. Naval Sea Systems Command: Washington, DC, USA, 2013.
- NACE Standard. TM0497-2012; Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems. NACE International: Houston, TX, USA, 2012. [Google Scholar]
- Hartt, W.H.; Lemieux, E.J.; Lucas, K.E. A Critical Review of Aluminum Anode Activation, Dissolution Mechanisms, and Performance. In Proceedings of the CORROSION 2001, Houston, TX, USA, 11–16 March 2001. [Google Scholar]
- Shibli, S.; Jabeera, B.; Manu, R. Development of high performance aluminium alloy sacrificial anodes reinforced with metal oxides. Mater. Lett. 2007, 61, 3000–3004. [Google Scholar] [CrossRef]
- Lyublinskii, E.Y. The intercrystalline failure of aluminum protector alloys of the system A1-Mg-Zn. Sov. Mater. Sci. 1975, 9, 691–694. [Google Scholar] [CrossRef]
- El Abedin, S.Z.; Endres, F. Electrochemical Behaviour of Al, Al—In and Al–Ga–In Alloys in Chloride Solutions Containing Zinc Ions. J. Appl. Electrochem. 2004, 34, 1071–1080. [Google Scholar] [CrossRef]
- Munoz, A.; Saidman, S.; Bessone, J. Corrosion of an Al–Zn–In alloy in chloride media. Corros. Sci. 2002, 44, 2171–2182. [Google Scholar] [CrossRef]
- Zazoua, A.; Azzouz, N. An investigation on the use of indium to increase dissolution of AlZn anodes in sea water. Mater. Des. 2008, 29, 806–810. [Google Scholar] [CrossRef]
- Pourgharibshahi, M.; Lambert, P. The role of indium in the activation of aluminum alloy galvanic anodes. Mater. Corros. 2016, 67, 857–866. [Google Scholar] [CrossRef]
- Datta, J.; Datta, S.; Banerjee, M. Corrosion behaviour of age hardenable aluminum-chromium alloys. Can. Metall. Q. 2005, 44, 41–44. [Google Scholar] [CrossRef]
- Moshier, W.; Davis, G.; Cote, G. Surface Chemistry of Sputter-Deposited Al-Mo and Al-Cr Alloys Polarized in 0.1 N KCl. J. Electrochem. Soc. 1989, 136, 356. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Yan, Y.; Zhu, H.; Fang, H.; Luo, X.; Dai, Y.; Yu, K. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys. Int. J. Hydrog. Energy 2019, 44, 12073–12084. [Google Scholar] [CrossRef]
- Kun, Y.; Yang, S.-H.; Xiong, H.-Q.; Li, W.; Dai, Y.-L.; Teng, F.; Fan, S.-F. Effects of gallium on electrochemical discharge behavior of Al–Mg–Sn–In alloy anode for air cell or water-activated cell. Trans. Nonferrous Met. Soc. China 2015, 25, 3747–3752. [Google Scholar]
- Keir, D.S.; Pryor, M.J.; Sperry, P.R. Galvanic corrosion characteristics of aluminum alloyed with group IV metals. J. Electrochem. Soc. 1967, 114, 777–782. [Google Scholar] [CrossRef]
- Berlanga-Labari, C.; Biezma-Moraleda, M.V.; Rivero, P.J. Corrosion of cast aluminum alloys: A review. Metals 2020, 10, 1384. [Google Scholar] [CrossRef]
- McAlister, A.; Kahan, D. The Al-Sn (aluminum-tin) system. Bull. Alloy. Phase Diagr. 1983, 4, 410–414. [Google Scholar] [CrossRef]
- Okamoto, H. Al-In (Aluminum-Indium). J. Phase Equilibria Diffus. 2012, 33, 413. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H. Al-Cr (Aluminum-Chromium). J. Phase Equilibria Diffus. 2008, 29, 112–113. [Google Scholar] [CrossRef]
- Murray, J.L. The Al-Ga (Aluminum-Gallium) system. Bull. Alloy. Phase Diagr. 1983, 4, 183–190. [Google Scholar] [CrossRef]
- Murray, J.L.; McAlister, A. The Al-Si (Aluminum-Silicon) system. Bull. Alloy. Phase Diagr. 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Murray, J.L. The Al-Zn (aluminum-zinc) system. Bull. Alloy. Phase Diagr. 1983, 4, 55–73. [Google Scholar] [CrossRef]
- Elliott, R.P.; Shunk, F.A. The Al-In (Aluminum-Indium) system. Bull. Alloy. Phase Diagr. 1980, 1, 73–76. [Google Scholar] [CrossRef]
- Murray, J.L. The Al-In (aluminum-indium) system. Bull. Alloy. Phase Diagr. 1983, 4, 271–278. [Google Scholar] [CrossRef]
- Elliott, R.P.; Shunk, F.A. The Al-Sn (Aluminum-Tin) system. Bull. Alloy. Phase Diagr. 1980, 1, 85–87. [Google Scholar] [CrossRef]
- Cheng, T.; Tang, Y.; Zhang, L. Update of thermodynamic descriptions of the binary Al-Sn and ternary Mg-Al-Sn systems. Calphad 2019, 64, 354–363. [Google Scholar] [CrossRef]
- Vander Voort, G.F.; Asensio-Lozano, J. The Al-Si phase diagram. Microsc. Microanal. 2009, 15, 60–61. [Google Scholar] [CrossRef] [Green Version]
- Asensio-Lozano, J.; Vander Voort, G.F. The Al-Si Phase Diagram. Tech Notes 5; Buehler: Lake Bluff, IL, USA, 2015; p. 5. [Google Scholar]
- Ikhmayies, S. Phase Diagrams of Al-Si System. In Energy Technology; Wang, T., Chen, X., Post Guillen, D., Zhang, L., Sun, Z., Wang, C., Haque, N., Howarter, J.A., Neelemeggham, N.R., Ikhmayies, S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 231–237. [Google Scholar]
- Yang, L. 6-Galvanic sensors and zero-voltage ammeter. In Techniques for Corrosion Monitoring, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 123–140. [Google Scholar]
- Kuchariková, L.; Liptáková, T.; Tillová, E.; Kajánek, D.; Schmidová, E. Role of chemical composition in corrosion of aluminum alloys. Metals 2018, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Sergi, G. Ten-year results of galvanic sacrificial anodes in steel reinforced concrete. Mater. Corros. 2011, 62, 98–104. [Google Scholar] [CrossRef]
- Davis, G.D.; Moshier, W.C.; Ahearn, J.S.; Hough, H.F.; Cote, G.O. Corrosion/passivation of aluminum in dilute sulfate solutions: A comparison of Pourbaix and surface behavior diagrams. J. Vac. Sci. Technol. A 1987, 5, 1152–1157. [Google Scholar] [CrossRef]
- Ahmad, Z. Chapter 3. Corrosion Kinetics. In Principles of Corrosion Engineering and Corrosion Control, 1st ed.; Elsevier Ltd: Oxford, UK, 2006; pp. 57–119. [Google Scholar]
- Ma, J.; Wen, J. Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy. J. Alloy. Compd. 2010, 496, 110–115. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys. Corros. Sci. 2009, 51, 2115–2119. [Google Scholar] [CrossRef]
- Breslin, C.B.; Carroll, W.M. The activation of aluminium by indium ions in chloride, bromide and iodide solutions. Corros. Sci. 1993, 34, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Birbilis, N.; Buchheit, R.G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion. J. Electrochem. Soc. 2005, 152, B140–B151. [Google Scholar] [CrossRef] [Green Version]
- Tuck, C.D.S.; Hunter, J.A.; Scamans, G.M. The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 1987, 134, 2970–2981. [Google Scholar] [CrossRef]
- Gupta, R.K.; Fabijanic, D.; Zhang, R.; Birbilis, N. Corrosion behaviour and hardness of in situ consolidated nanostructured Al and Al-Cr alloys produced via high-energy ball milling. Corros. Sci. 2015, 98, 643–650. [Google Scholar] [CrossRef]
- Frankel, G.S.; Jahnes, C.V.; Russak, M.A. On the pitting resistance of sputter-deposited aluminum alloys. J. Electrochem. Soc. 1993, 140, 2192–2197. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, A.M.; Macciò, D.; Luciano, G.; Canepa, E.; Traverso, P. Thermal and corrosion behavior of as cast Al-Si alloys with rare earth elements. J. Alloys Compd. 2017, 695, 2180–2189. [Google Scholar] [CrossRef]
- Bohnes, H.; Franke, G. 6. Galvanic (sacrificial) anodes. In Handbook of Cathodic Corrosion Protection, 3rd ed.; Elsevier Inc.: Houston, TX, USA, 1997; pp. 179–206. [Google Scholar]
- Cramer, S.D.; Covino, B.S., Jr. ASM Handbook: Corrosion: Fundamentals, Testing, and Protection, 10th ed.; ASM International: Novelty, OH, USA, 2012; Volume 13A, pp. 1–1335. [Google Scholar]
- Vargel, C. Corrosion of Aluminium, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2004; pp. 1–626. [Google Scholar]
Alloy | Solution Annealing Temperatures (°C) |
---|---|
Al | 600 |
Al-3Zn-Ti-Mn-In | 530 |
Al-0.5Cr | 600 |
Al-0.2Ga | 600 |
Al-0.1In | 600 |
Al-2Si | 530 |
Al-1Sn | 200 |
Al-5Zn | 530 |
Alloy | Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
Zn (wt.%) | Ti (wt.%) | In (wt.%) | Mn (wt.%) | Cr (wt.%) | Ga (wt.%) | Si (wt.%) | Sn (wt.%) | Al (wt.%) | |
Al | 0.04 | 0.01 | <0.01 | - | <0.01 | - | 0.18 | <0.01 | Bal. * |
Al-3Zn-Ti-Mn-In | 3.19 | 0.05 | 0.03 | 0.36 | - | - | - | - | Bal. |
Al-0.5Cr | - | - | - | - | 0.56 | - | 0.17 | - | Bal. |
Al-0.2Ga | - | - | - | - | - | 0.28 | 0.16 | - | Bal. |
Al-0.1In | - | - | 0.21 | - | - | - | 0.20 | - | Bal. |
Al-2Si | - | - | - | - | - | - | 2.72 | - | Bal. |
Al-1Sn | - | - | - | - | - | - | 0.10 | 1.04 | Bal. |
Al-5Zn | 5.23 | - | - | - | - | - | - | Bal. |
Alloy/Point | Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sn (wt.%) | In (wt.%) | Zn (wt.%) | Mn (wt.%) | Ti (wt.%) | Si (wt.%) | Cr (wt.%) | Ga (wt.%) | Al (wt.%) | |
Al-0.5Cr | - | - | - | - | - | - | 0.43 ± 0.06 | - | Bal. * |
Al-0.2Ga | - | - | - | - | - | - | - | 0.34 ± 0.09 | Bal. |
Al-0.1In | |||||||||
Precipitates (P) | - | 16.12 ± 3 | - | - | - | - | - | - | Bal. |
Matrix (M) | - | 0.15 ± 0.03 | - | - | - | - | - | - | Bal. |
Al-1Sn | |||||||||
Precipitates (P) | 94.89 ± 1 | - | - | - | - | - | - | - | Bal. |
Matrix (M) | 0.13 ± 0.03 | - | - | - | - | - | - | - | Bal. |
Al-2Si | |||||||||
Precipitates (P) | - | - | - | - | - | 89.77 ± 4 | - | - | Bal. |
Matrix (M) | - | - | - | - | - | 2.47 ± 0.03 | - | - | Bal. |
Al-3Zn-Ti-Mn-In | |||||||||
Precipitates (P) | - | 3.21 ± 0.26 | 5.96 ± 1.1 | 5.92 ± 3.6 | 1.27 ± 0.1 | - | - | - | Bal. |
Matrix (M) | - | 2.50 ± 0.12 | 6.09 ±0.31 | 1.34 ± 0.04 | 1.04 ±0.03 | - | - | - | Bal. |
Al-5Zn | - | - | 4.88 ± 0.02 | - | - | - | - | - | Bal. |
As-Cast | Eop (mV) | Ecorr (mV) | Icorr (µA/cm2) | Ebreak (mV) |
Al | −1193 ± 32 | −1257 ± 33 | 0.11 ± 0.06 | −722 |
Al-0.1In | −1173 ± 28 | −1237 ± 27 | 0.08 ± 0.004 | −1196 |
Al-0.2Ga | −1251 ± 29 | −1270 ± 39 | 0.07 ± 0.02 | −912 |
Al-0.5Cr | −1185 ± 32 | −1238 ± 29 | 0.11 ± 0.02 | −709 |
Al-1Sn | −1443 ± 8 | −1410 ± 1 | 1.91 ± 0.47 | - |
Al-2Si | −860 ± 11 | −775 ± 12 | 2.37 ± 0.65 | −714 |
Al-3Zn-Ti-Mn-In | −1095 ± 3 | −1020 ± 62 | 11.36 ± 0.6 | - |
Al-5Zn | −1017 ± 36 | −961 ± 16 | 1.77 ± 1.34 | - |
Solution-Treated | Eop (mV) | Ecorr (mV) | Icorr (µA/cm2) | Ebreak (mV) |
Al | −1230 ± 36 | −1287 ± 31 | 0.16 ± 0.05 | −738 |
Al-0.1In | −1239 ± 19 | −1260 ± 21 | 0.09 ± 0.006 | −1193 |
Al-0.2Ga | −1189 ± 41 | −1259 ± 36 | 0.07 ± 0.04 | −874 |
Al-0.5Cr | −1202 ± 48 | −1258 ± 61 | 0.16 ± 0.02 | −718 |
Al-1Sn | −1434 ± 3 | −1403 ± 6 | 4.52 ± 1.0 | - |
Al-2Si | −935 ± 65 | −900 ± 68 | 2.37 ± 0.57 | −730 |
Al-3Zn-Ti-Mn-In | −1091 ± 3 | −964 ± 39 | 6.83 ± 3.44 | - |
Al-5Zn | −1118 ± 17 | −994 ± 43 | 1.09 ± 0.48 | - |
Solution-Treated Alloy | Estimation from Polarisation Curves | After 1 Day | After 21 Days | |||
---|---|---|---|---|---|---|
Galvanic Current (mA/cm2) | Mixed Potential (mV) | Galvanic Current (mA/cm2) | Mixed Potential (mV) | Galvanic Current (mA/cm2) | Mixed Potential (mV) | |
Al | 0.17 ± 0.01 | −710 ± 7 | 0.14 | −728 | 0.12 | −733 |
Al-0.1In | 0.92 ± 0.02 | −1081 ± 6 | 0.66 | −1135 | 0.41 | −1163 |
Al-0.2Ga | 0.20 ± 0.01 | −799 ± 19 | 0.14 | −897 | 0.54 | −1277 |
Al-0.5Cr | 0.16 ± 0.01 | −689 ± 2 | 0.15 | −685 | 0.045 | −780 |
Al-1Sn | 2.32 ± 0.23 | −1321 ± 12 | 2.41 | −1348 | 0.90 | −1302 |
Al-2Si | 0.17 ± 0.02 | −697 ± 6 | 0.15 | −691 | 0.13 | −686 |
Al-3Zn-Ti-Mn-In | 0.29 ± 0.02 | −899 ± 9 | 0.22 | −911 | 0.14 | −1071 |
Al-5Zn | 0.36 ± 0.02 | −931 ± 7 | 0.15 | −962 | 0.07 | −966 |
Galvanic Couple | Volume Loss (µm3) |
---|---|
Steel-Al | 4.5 × 107 |
Steel-Al-1Sn | 5.8 × 108 |
Steel-Al-5Zn | 1.1 × 108 |
Steel-Al-3Zn-Ti-Mn-In | 4.4 × 108 |
Steel-Al-0.1In | 6.8 × 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Campos, M.d.R.; Blawert, C.; Scharnagl, N.; Störmer, M.; Zheludkevich, M.L. Cathodic Protection of Mild Steel Using Aluminium-Based Alloys. Materials 2022, 15, 1301. https://doi.org/10.3390/ma15041301
Silva Campos MdR, Blawert C, Scharnagl N, Störmer M, Zheludkevich ML. Cathodic Protection of Mild Steel Using Aluminium-Based Alloys. Materials. 2022; 15(4):1301. https://doi.org/10.3390/ma15041301
Chicago/Turabian StyleSilva Campos, Maria del Rosario, Carsten Blawert, Nico Scharnagl, Michael Störmer, and Mikhail L. Zheludkevich. 2022. "Cathodic Protection of Mild Steel Using Aluminium-Based Alloys" Materials 15, no. 4: 1301. https://doi.org/10.3390/ma15041301
APA StyleSilva Campos, M. d. R., Blawert, C., Scharnagl, N., Störmer, M., & Zheludkevich, M. L. (2022). Cathodic Protection of Mild Steel Using Aluminium-Based Alloys. Materials, 15(4), 1301. https://doi.org/10.3390/ma15041301