Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air
Abstract
:1. Introduction
2. Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Sealed Air and Resistance Heating
2.1. Utilization of Low Pressure Sealed Air in Hot Tube Gas Forming
2.2. Principles of Sealed-Air Hot Tube Gas Forming Using Axial Feeding and Resistance Heating
3. Deformation Behavior of Low Pressure Sealed-Air Hot Tube Gas Forming Using Axial Feeding
3.1. Influences of Initial Pressure and Heating Temperature on Bulging Deformation
3.2. Influence of Axial Feeding on Bulging Deformation
4. Improvement of Die Quenchability of Tubes in Low Pressure Sealed-Air Hot Tube Gas Forming
4.1. Influence of Sealed-Air Hot Tube Gas Forming on Hardness Distribution
4.2. Measuring Technique of Tube Temperature during Die Quenching Inside Forming Dies
4.3. Cooling Behavior in Forming Dies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Koç, M.; Altan, T. An overall review of the tube hydroforming (THF) technology. J. Mater. Process. Technol. 2001, 108, 384–393. [Google Scholar] [CrossRef]
- Yuan, S.J.; Wang, X.S.; Liu, G.; Wang, Z.R. Control and use of wrinkles in tube hydroforming. J. Mater. Process. Technol. 2007, 182, 6–11. [Google Scholar] [CrossRef]
- Nikhare, C.; Weiss, M.; Hodgson, P.D. FEA comparison of high and low pressure tube hydroforming of TRIP steel. Comput. Mater. Sci. 2009, 47, 146–152. [Google Scholar] [CrossRef]
- Nikhare, C.; Weiss, M.; Hodgson, P.D. Experimental and numerical investigation of low pressure tube hydroforming on stainless steel. In Proceedings of the 12th International Conference on Metal Forming, Kraków, Poland, 21–24 September 2008; pp. 272–279. [Google Scholar]
- Chu, G.N.; Lin, C.Y.; Li, W.; Lin, Y.L. Effect of internal pressure on springback during low pressure tube hydroforming. Int. J. Mater. Form. 2018, 11, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Tang, Z.; He, Z.; Yuan, S. Warm hydroforming of magnesium alloy tube with large expansion ratio. Trans. Nonferrous Met. Soc. China 2010, 20, 2071–2075. [Google Scholar] [CrossRef]
- Kim, B.J.; Van Tyne, C.J.; Lee, M.Y.; Moon, Y.H. Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J. Mater. Process. Technol. 2007, 187, 296–299. [Google Scholar] [CrossRef]
- Yi, H.K.; Pavlina, E.J.; Van Tyne, C.J.; Moon, Y.H. Application of a combined heating system for the warm hydroforming of lightweight alloy tubes. J. Mater. Process. Technol. 2008, 203, 532–536. [Google Scholar] [CrossRef]
- He, Z.B.; Fan, X.B.; Shao, F.; Zheng, K.L.; Wang, Z.B.; Yuan, S.J. Formability and Microstructure of AA6061 Al Alloy Tube for Hot Metal Gas Forming at Elevated Temperature. Trans. Nonferrous Met. Soc. China 2012, 22, s364–s369. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.-I.; Fujimoto, K. Hot gas bulging of sealed aluminium alloy tube using resistance heating. Manuf. Rev. 2014, 1, 5. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.-I.; Unou, C. Optimization of condition in Hot Gas Bulging of Aluminum Alloy tube using Resistance Heating set into dies. Key Eng. Mater. 2011, 473, 69–74. [Google Scholar] [CrossRef]
- Trân, R.; Reuther, F.; Winter, S.; Psyk, V. Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profiles. Metals 2020, 10, 1150. [Google Scholar] [CrossRef]
- Talebi-Anaraki, A.; Chougan, M.; Loh-Mousavi, M.; Maeno, T. Hot Gas Forming of Aluminum Alloy Tubes Using Flame Heating. J. Manuf. Mater. Process. 2020, 4, 56. [Google Scholar] [CrossRef]
- Talebi-Anaraki, A.; Loh-Mousavi, M.; Wang, L.L. Experimental and numerical investigation of the influence of pulsating pressure on hot tube gas forming using oscillating heating. Int. J. Adv. Manuf. Technol. 2018, 97, 3839–3848. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, J.; Dang, K.; Liu, G.; Tao, K. Experimental investigation into the electropulsing assisted pulsating gas forming of CP-Ti tubes. J. Mater. Process.Technol. 2020, 278, 116492. [Google Scholar] [CrossRef]
- Mori, K.; Bariani, P.F.; Behrens, B.-A.; Brosius, A.; Bruschi, S.; Maeno, T.; Merklein, M.; Yanagimoto, J. Hot stamping of ultra-high strength steel parts. CIRP Ann. Manuf. Technol. 2017, 66, 755–777. [Google Scholar] [CrossRef]
- Vadillo, L.; Santos, M.T.; Gutierrez, M.A.; Perez, I.; Gonzalez, B.; Uthiesangsuk, V. Simulation and Experimental results of the Hot metal gas forming Technology for high strength steel and stainless steel tubes forming. AIP Conf. Proc. 2007, 908, 1199–1204. [Google Scholar] [CrossRef]
- Paul, A.; Strano, M. The Influence of Process Variables on the Gas Forming and press Hardening of Steel Tubes. J. Mater. Process. Technol. 2015, 228, 160–169. [Google Scholar] [CrossRef]
- Neugebauer, R.; Schieck, F. Active media-based form hardening of tubes and profiles. Prod. Eng. 2010, 4, 385–390. [Google Scholar] [CrossRef]
- Bach, M.; Degenkolb, L.; Reuther, F.; Psyk, V.; Demuth, R.; Werner, M. Conductive Heating during Press Hardening by Hot Metal Gas Forming for Curved Complex Part Geometries. Metals 2020, 10, 1104. [Google Scholar] [CrossRef]
- Winter, S.; Werner, M.; Haase, R.; Psyk, V.; Fritsch, S.; Böhme, M.; Wagner, M. Processing Q&P steels by hot-metal gas forming: Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSS. J. Mater. Process. Technol. 2021, 293, 117070. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.; Adachi, K. Gas forming of ultra-high strength steel hollow part using air filled into sealed tube and resistance heating. J. Mater. Process. Technol. 2014, 214, 97–105. [Google Scholar] [CrossRef]
- Omar, A.; Tewari, A.; Narasimhan, K. Effect of bulge ratio on the deformation behaviour and fracture location during welded steel tube hydroforming process. Results Mater. 2020, 6, 100096. [Google Scholar] [CrossRef]
- Omar, A.; Tewari, A.; Narasimhan, K. Formability and microstructure evolution during hydroforming of drawing quality welded steel tube. J. Strain Anal. Eng. Des. 2015, 50, 542–556. [Google Scholar] [CrossRef]
- Talebi-Anaraki, A.; Maeno, T.; Ikeda, R.; Morishita, K.; Mori, K. Quenchability improvement and control simplification by ice mandrel in hot stamping of ultra-high strength steel hollow parts. J. Manuf. Processes 2021, 64, 916–926. [Google Scholar] [CrossRef]
- Yang, L.; Hu, G.; Liu, J. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path. Int. J. Adv. Manuf. Technol. 2015, 79, 793–803. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.; Sakagami, M.; Nakao, Y.; Talebi-Anaraki, A. Minimisation of heating time for full hardening in hot stamping using direct resistance heating. J. Manuf. Mater. Process. 2020, 4, 80. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Current density (A/mm2) | 30 (5.6 kA) |
Heating time (s) | 11.5 |
Heating temperature (°C) | 1050 |
Distance between electrodes (mm) | 100 |
Initial internal air pressure p0 (MPa) | 0–2.5 |
Velocity of axial feeding (mm/s) | 25 |
Capacity of axial force (kN) | 20 |
Axial feeding s (mm) | 0–15 |
C | Si | Mn | P | S | Cr | B | Fe |
---|---|---|---|---|---|---|---|
0.187 | 0.159 | 1.37 | 0.0170 | 0.0040 | 0.29 | 0.0039 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talebi-Anaraki, A.; Maeno, T.; Matsubara, Y.; Ikeda, R.; Mori, K.-i. Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air. Materials 2022, 15, 1322. https://doi.org/10.3390/ma15041322
Talebi-Anaraki A, Maeno T, Matsubara Y, Ikeda R, Mori K-i. Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air. Materials. 2022; 15(4):1322. https://doi.org/10.3390/ma15041322
Chicago/Turabian StyleTalebi-Anaraki, Ali, Tomoyoshi Maeno, Yuta Matsubara, Ryohei Ikeda, and Ken-ichiro Mori. 2022. "Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air" Materials 15, no. 4: 1322. https://doi.org/10.3390/ma15041322
APA StyleTalebi-Anaraki, A., Maeno, T., Matsubara, Y., Ikeda, R., & Mori, K. -i. (2022). Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air. Materials, 15(4), 1322. https://doi.org/10.3390/ma15041322